IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1861-d326960.html
   My bibliography  Save this article

Anaerobic Co-Digestion of Oil Sludge with Corn Stover for Efficient Biogas Production

Author

Listed:
  • Qian Yang

    (College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
    Shandong Engineering and Technology Research Center for Fragile Ecological Belt of Yellow River Delta, Binzhou 256600, China)

  • Chenxi Zhang

    (College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
    Shandong Engineering and Technology Research Center for Fragile Ecological Belt of Yellow River Delta, Binzhou 256600, China)

  • Lei Li

    (College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China)

  • Weijie Xu

    (College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China)

Abstract

The feasibility of anaerobic co-digestion for the utilization of oil sludge was verified using corn stover, to assess the influence of different raw material ratios and inoculum volumes on the properties of the generated gas. The anaerobic co-digestion method is a novel treatment technology, which may help to solve the problem of pollution by hazardous waste oil sand from the oil exploitation and smelting process. Results showed that single-oil sludge was not suitable for gas production as a digestive substrate due to the lack of organic materials and possible hazardous materials. With the increase in the quality of exogenous organic matter (corn stover), the cumulative gas production volume was proportional to the amount of corn stover material added. It was established that when the mass ratio of corn stover to oil sludge was 4:1, the gas production performance was optimal, with a cumulative gas yield of 1222.5 mL using an inoculum volume of 30 mL. The results of this study provide a fundamental parameter baseline for the treatment of oil sludge and the improvement of gas production efficiency.

Suggested Citation

  • Qian Yang & Chenxi Zhang & Lei Li & Weijie Xu, 2020. "Anaerobic Co-Digestion of Oil Sludge with Corn Stover for Efficient Biogas Production," Sustainability, MDPI, vol. 12(5), pages 1-9, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1861-:d:326960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    2. Xinxin Tang & Xuesong Wei & Songying Chen, 2019. "Continuous Pyrolysis Technology for Oily Sludge Treatment in the Chain-Slap Conveyors," Sustainability, MDPI, vol. 11(13), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    2. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    4. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    5. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    6. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    7. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Galal, Osama H. & Said, Noha & Ahmed, Dalia, 2021. "Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network," Renewable Energy, Elsevier, vol. 178(C), pages 226-240.
    8. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    9. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    10. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    11. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    12. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    13. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    14. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    15. Wang, Ruikun & Lin, Zhaohua & Meng, Shu & Liu, Senyang & Zhao, Zhenghui & Wang, Chunbo & Yin, Qianqian, 2022. "Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein," Energy, Elsevier, vol. 259(C).
    16. Choi, Oh Kyung & Park, Jo Yong & Kim, Jae-Kon & Lee, Jae Woo, 2019. "Bench-scale production of sewage sludge derived-biodiesel (SSD-BD) and upgrade of its quality," Renewable Energy, Elsevier, vol. 141(C), pages 914-921.
    17. Takata, Miki & Fukushima, Kazuyo & Kawai, Minako & Nagao, Norio & Niwa, Chiaki & Yoshida, Teruaki & Toda, Tatsuki, 2013. "The choice of biological waste treatment method for urban areas in Japan—An environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 557-567.
    18. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    19. Chen, Renjie & Yu, Xiaoqing & Dong, Bin & Dai, Xiaohu, 2020. "Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis," Energy, Elsevier, vol. 190(C).
    20. Ju-Hyoung Park & Min-Ho Jin & Young-Joo Lee & Gyu-Seob Song & Jong Won Choi & Dong-Wook Lee & Young-Chan Choi & Se-Joon Park & Kwang Ho Song & Joeng-Geun Kim, 2019. "Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects," Energies, MDPI, vol. 12(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1861-:d:326960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.