IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1839-d326515.html
   My bibliography  Save this article

An Innovative Industry 4.0 Cloud Data Transfer Method for an Automated Waste Collection System

Author

Listed:
  • Costel Emil Cotet

    (Faculty of Industrial Engineering and Robotics, Department of Robots and Manufacturing Systems, University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • Gicu Calin Deac

    (Faculty of Industrial Engineering and Robotics, Department of Robots and Manufacturing Systems, University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • Crina Narcisa Deac

    (Faculty of Industrial Engineering and Robotics, Department of Robots and Manufacturing Systems, University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • Cicerone Laurentiu Popa

    (Faculty of Industrial Engineering and Robotics, Department of Robots and Manufacturing Systems, University Politehnica of Bucharest, 060042 Bucharest, Romania)

Abstract

Moving to Industry 4.0 involves the collection of massive amounts of data and the development of big data applications that can ensure a quick data flow between different systems, including massive amounts of data and information collection from smart sensors, and sending them to cloud applications that allow real-time data monitoring and processing. Securing and protecting the transmitted data represents a big issue to be discussed and resolved. In the paper, we propose a new method of data encoding and encryption for cloud applications using PNG format images. The proposed method is described in comparison with one of the classical methods of data encoding and transmission used currently. The paper includes a case study in which the proposed method was used to collect and transmit data from an automated waste collection system. The results show that the proposed method represents a secure, fast and efficient way to send and store the data in the cloud compared to the methods currently used. The proposed method is not limited to being used only in waste management but can be used successfully for any type of manufacturing system from smart factories.

Suggested Citation

  • Costel Emil Cotet & Gicu Calin Deac & Crina Narcisa Deac & Cicerone Laurentiu Popa, 2020. "An Innovative Industry 4.0 Cloud Data Transfer Method for an Automated Waste Collection System," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1839-:d:326515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cicerone Laurentiu Popa & George Carutasu & Costel Emil Cotet & Nicoleta Luminita Carutasu & Tiberiu Dobrescu, 2017. "Smart City Platform Development for an Automated Waste Collection System," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atiq Zaman, 2022. "Waste Management 4.0: An Application of a Machine Learning Model to Identify and Measure Household Waste Contamination—A Case Study in Australia," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Chowdhury, Naimur Rahman & Paul, Sanjoy Kumar & Sarker, Tapan & Shi, Yangyan, 2023. "Implementing smart waste management system for a sustainable circular economy in the textile industry," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Yan Wang & Congxianzi Pei & Qiushuo Li & Jingbang Li & Deng Pan & Ciwei Gao, 2020. "Flow Shop Providing Frequency Regulation Service in Electricity Market," Energies, MDPI, vol. 13(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasmawaty & Yulis Tyagita Utami & Darius Antoni, 2022. "Building Green Smart City Capabilities in South Sumatra, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    2. Hilal Shams & Altaf Hossain Molla & Mohd Nizam Ab Rahman & Hawa Hishamuddin & Zambri Harun & Nallapaneni Manoj Kumar, 2023. "Exploring Industry-Specific Research Themes on E-Waste: A Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    3. Secinaro, Silvana & Brescia, Valerio & Lanzalonga, Federico & Santoro, Gabriele, 2022. "Smart city reporting: A bibliometric and structured literature review analysis to identify technological opportunities and challenges for sustainable development," Journal of Business Research, Elsevier, vol. 149(C), pages 296-313.
    4. Shaik Vaseem Akram & Rajesh Singh & Anita Gehlot & Mamoon Rashid & Ahmed Saeed AlGhamdi & Sultan S. Alshamrani & Deepak Prashar, 2021. "Role of Wireless Aided Technologies in the Solid Waste Management: A Comprehensive Review," Sustainability, MDPI, vol. 13(23), pages 1-31, November.
    5. Jara Laso & Isabel García-Herrero & María Margallo & Alba Bala & Pere Fullana-i-Palmer & Angel Irabien & Rubén Aldaco, 2019. "LCA-Based Comparison of Two Organic Fraction Municipal Solid Waste Collection Systems in Historical Centres in Spain," Energies, MDPI, vol. 12(7), pages 1-18, April.
    6. Monica Leba & Andreea Ionica & Raluca Dovleac & Remus Dobra, 2018. "Waste Management System for Batteries," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    7. Yelena Popova & Ilze Sproge, 2021. "Decision-Making within Smart City: Waste Sorting," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    8. Vasja Roblek & Maja Meško & Mirjana Pejić Bach & Oshane Thorpe & Polona Šprajc, 2020. "The Interaction between Internet, Sustainable Development, and Emergence of Society 5.0," Data, MDPI, vol. 5(3), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1839-:d:326515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.