IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1565-d322679.html
   My bibliography  Save this article

Transferability of Process Parameters in Laser Powder Bed Fusion Processes for an Energy and Cost Efficient Manufacturing

Author

Listed:
  • Oliver Pannitz

    (Hybrid Additive Manufacturing, Ruhr University Bochum, 44801 Bochum, Germany)

  • Jan T. Sehrt

    (Hybrid Additive Manufacturing, Ruhr University Bochum, 44801 Bochum, Germany)

Abstract

In the past decade, the sales of metal additive manufacturing systems have increased intensely. In particular, PBF-LB/M systems (powder bed fusion of metals using a laser-based system) represent a technology of great industrial interest, in which metallic powders are molten and solidified layer upon layer by a focused laser beam. This leads to a simultaneous increase in demand for metallic powder materials. Due to adjusted process parameters of PBF-LB/M systems, the powder is usually procured by the system’s manufacturer. The requirement and freedom to process different feedstocks in a reproducible quality and the economic and ecological factors involved are reasons to have a closer look at the differences between the quality of the provided metallic powders. Besides, different feedstock materials require different energy inputs, allowing a sustainable process control to be established. In this work, powder quality of stainless steel 1.4404 and the effects during the processing of metallic powders that are nominally the same were analyzed and the influence on the build process followed by the final part quality was investigated. Thus, a correlation between morphology, particle size distribution, absorptivity, flowability, and densification depending on process parameters was demonstrated. Optimized exposure parameters to ensure a more sustainable and energy and cost-efficient manufacturing process were determined.

Suggested Citation

  • Oliver Pannitz & Jan T. Sehrt, 2020. "Transferability of Process Parameters in Laser Powder Bed Fusion Processes for an Energy and Cost Efficient Manufacturing," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1565-:d:322679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1565/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gokan May & Foivos Psarommatis, 2023. "Maximizing Energy Efficiency in Additive Manufacturing: A Review and Framework for Future Research," Energies, MDPI, vol. 16(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1565-:d:322679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.