IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p980-d314206.html
   My bibliography  Save this article

Experimental Study to Design Warm Mix Asphalts and Recycled Warm Mix Asphalts Using Natural Zeolite as Additive for Sustainable Pavements

Author

Listed:
  • Elsa Sanchez-Alonso

    (Department of Civil Engineering, Universidad de La Frontera, Francisco Salazar street 01145, Temuco 4811230, Chile)

  • Gonzalo Valdes-Vidal

    (Department of Civil Engineering, Universidad de La Frontera, Francisco Salazar street 01145, Temuco 4811230, Chile)

  • Alejandra Calabi-Floody

    (Department of Civil Engineering, Universidad de La Frontera, Francisco Salazar street 01145, Temuco 4811230, Chile)

Abstract

There are currently various technologies for the manufacture of warm mix asphalts (WMA). This paper presents the possibility of using a natural zeolite to manufacture WMA as an alternative to existing synthetic products for the manufacture of this type of mixture. Moreover, the possibility of manufacturing WMA with the addition of recycled asphalt pavement (RAP) using natural zeolite as the basis of a warm mix technology was evaluated. Firstly, asphalt mixtures were manufactured at three different temperatures (145 °C, 135 °C, and 125 °C) with different percentages of natural zeolite to determine the temperature and the optimum content for the manufacture of WMA. Then, the zeolite moisture content and its release over time were determined at different temperatures, and its distribution in the binder was checked at different concentrations by scanning electron microscopy and fluorescence. Next, with the optimum zeolite content, the addition of RAP between 10–30% in the WMA at the same three manufacturing temperatures was evaluated. Two types of compaction were used: the impact and gyratory compactions. The Marshall parameters were evaluated for all the designed mixtures. The results indicated that the manufacture of WMA with the addition of natural zeolite is feasible, and depending on the required mixing temperature, recycled WMA with different percentages of RAP can be obtained.

Suggested Citation

  • Elsa Sanchez-Alonso & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody, 2020. "Experimental Study to Design Warm Mix Asphalts and Recycled Warm Mix Asphalts Using Natural Zeolite as Additive for Sustainable Pavements," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:980-:d:314206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julide Oner & Burak Sengoz, 2015. "Utilization of Recycled Asphalt Concrete with Warm Mix Asphalt and Cost-Benefit Analysis," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayder Abbas Obaid & Tameem Mohammed Hashim & Ahmed Awad Matr Al-Abody & Mohammed Salah Nasr & Ghadeer Haider Abbas & Abdullah Musa Kadhim & Monower Sadique, 2022. "Properties of Modified Warm-Mix Asphalt Mixtures Containing Different Percentages of Reclaimed Asphalt Pavement," Energies, MDPI, vol. 15(20), pages 1-29, October.
    2. F. C. G. Martinho & L. G. Picado-Santos & S. D. Capitão, 2018. "Feasibility Assessment of the Use of Recycled Aggregates for Asphalt Mixtures," Sustainability, MDPI, vol. 10(6), pages 1-23, May.
    3. Abdalrhman Milad & Ali Mohammed Babalghaith & Abdulnaser M. Al-Sabaeei & Anmar Dulaimi & Abdualmtalab Ali & Sajjala Sreedhar Reddy & Munder Bilema & Nur Izzi Md Yusoff, 2022. "A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement," IJERPH, MDPI, vol. 19(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:980-:d:314206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.