IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10668-d465562.html
   My bibliography  Save this article

Co-Composting of Khat-Derived Biochar with Municipal Solid Waste: A Sustainable Practice of Waste Management

Author

Listed:
  • Zewdu Abebe Tessfaw

    (Department of Environmental Health Sciences and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia)

  • Abebe Beyene

    (Department of Environmental Health Sciences and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia)

  • Amsalu Nebiyu

    (Department of Horticulture and Plant Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia)

  • Krzysztof Pikoń

    (Department of Technologies and Installations for Waste Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Marcin Landrat

    (Department of Technologies and Installations for Waste Management, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

Biochar is a way to improve the performance of the composting process and the quality of compost. This study was aimed to investigate the optimum ratio of khat straw ( Catha edulis ) biochar and organic municipal solid waste mixtures to improve the quality of the resulting co-composts. Khat-derived biochar during pyrolysis at 350 °C was added to organic municipal solid waste mix and four co-composting treatments were prepared with the compositions (% w / w ): control compost (no biochar) and 5%, 15%, and 25% co-composted biochar in three replicates. The total organic carbon, organic matter, total nitrogen, available phosphorus, and potassium values ranged as 16.76–21.45%, 30.77–40.26%, 0.97–1.68%, 0.58–0.76%, and 12.72–15.29%, respectively. The results confirmed that 5% and 15% co-composted khat biochars had significantly reduced ( p < 0.05) organic matter loss and increased the contents of cation exchange capacity, pH, phosphorous, potassium, calcium, magnesium, and zinc compared to the control compost, while some heavy metals (Fe, Cu, and Mn) and EC values in co-composted biochars are lower than the control compost. Khat-derived biochar could be added to municipal organic waste mix at 5–15% ( w / w ) in order to get better quality of compost, which can be used as biofertilizer.

Suggested Citation

  • Zewdu Abebe Tessfaw & Abebe Beyene & Amsalu Nebiyu & Krzysztof Pikoń & Marcin Landrat, 2020. "Co-Composting of Khat-Derived Biochar with Municipal Solid Waste: A Sustainable Practice of Waste Management," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10668-:d:465562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    2. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Jacintos Nieves & Gian Carlo Delgado Ramos, 2023. "Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    5. Sanjay RODE, 2020. "Population Growth And Bottlenecks In Provision Of Qualitative Public Infrastructure Services In Thane Municipal Corporation," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(4), pages 94-115, December.
    6. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    7. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    8. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    9. Gabriella Esposito De Vita & Cristina Visconti & Gantuya Ganbat & Marina Rigillo, 2023. "A Collaborative Approach for Triggering Environmental Awareness: The 3Rs for Sustainable Use of Natural Resources in Ulaanbaatar (3R4UB)," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    10. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    11. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    12. Bhadha, Jehangir H. & Jennewein, Stephen P. & Khatiwada, Raju, 2017. "Phosphorus Sorption Behavior of Torrefied Agricultural Byproducts under Sonicated Versus Non-Sonicated Conditions," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(4), November.
    13. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Shi, Xiaogang & Ronsse, Frederik & Nachenius, Robert & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production," Renewable Energy, Elsevier, vol. 143(C), pages 1477-1487.
    15. Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
    16. Korus, Agnieszka & Jagiello, Jacek & Jaroszek, Hanna & Copik, Paulina & Szlęk, Andrzej, 2024. "Variation of pore development scenarios by changing gasification atmosphere and temperature," Energy, Elsevier, vol. 289(C).
    17. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    18. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    19. Rafail Isemin & Alexander Mikhalev & Oleg Milovanov & Artemy Nebyvaev, 2022. "Some Results of Poultry Litter Processing into a Fertilizer by the Wet Torrefaction Method in a Fluidized Bed," Energies, MDPI, vol. 15(7), pages 1-11, March.
    20. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10668-:d:465562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.