IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p9992-d453474.html
   My bibliography  Save this article

Adaptation of HVAC Systems to Reduce the Spread of COVID-19 in Buildings

Author

Listed:
  • Frantisek Vranay

    (Faculty of Civil Engineering, Institute of Architectural Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

  • Ladislav Pirsel

    (Alocons Ltd., Lombardiniho 22/B, 831 03 Bratislava, Slovakia)

  • Richard Kacik

    (Lightech Ltd., Stará Vajnorská 90, 831 04 Bratislava, Slovakia)

  • Zuzana Vranayova

    (Faculty of Civil Engineering, Institute of Architectural Engineering, Technical University of Kosice, 042 00 Kosice, Slovakia)

Abstract

In 2020, all the world has been confronted with COVID-19. Bringing people together in buildings is proving to be a risk factor that we have to deal with. Although the greatest attention is paid to the SARS-CoV-2 virus, there are a number of other pathogens (viruses, bacteria, fungi, etc.) that can be transmitted through the air. These pathogens are sensitive to UV-C radiation. UV-C fluorescent lamps have been developed with technical parameters that are adapted to HVAC operating conditions. By using germicidal sources to disinfect the transported air, more than 90% of the SARS-CoV-2 virus, more than 97% of Influenza A virus, and 100% of Legionella pneumophila can be inactivated. The use of UV-C emitters for air disinfection allows the use of circulation and recuperation. Total balance of energy and CO 2 emissions by variants and energies used, including humidification were performed for Slovak conditions. The operation of germicidal sources during the heating period in selected cities in our example would represent only 0.45% of the difference in heat demand and 0.42% of the difference in energy demand between operation according to recommendations and operation with germicidal sources. It is therefore an effective means of ensuring health safety and energy efficiency for the future.

Suggested Citation

  • Frantisek Vranay & Ladislav Pirsel & Richard Kacik & Zuzana Vranayova, 2020. "Adaptation of HVAC Systems to Reduce the Spread of COVID-19 in Buildings," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9992-:d:453474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/9992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/9992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamil Pochwat & Sabina Kordana-Obuch & Mariusz Starzec & Beata Piotrowska, 2020. "Financial Analysis of the Use of Two Horizontal Drain Water Heat Recovery Units," Energies, MDPI, vol. 13(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carola Lingua & Giulia Crespi & Cristina Becchio & Stefano Paolo Corgnati, 2023. "Designing IAQ-Resilient Post-Pandemic Buildings," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    2. Sabina Kordana-Obuch & Mariusz Starzec & Daniel Słyś, 2021. "Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences," Energies, MDPI, vol. 14(17), pages 1-30, September.
    3. Annamária Behúnová & Lucia Knapčíková & Marcel Behún & Tomáš Mandičák & Peter Mésároš, 2021. "Intelligent Designing and Increasing the Variability of Healthy Residential Buildings by Customizing Recycled Polyvinyl Butyral," Sustainability, MDPI, vol. 13(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabina Kordana-Obuch & Mariusz Starzec, 2022. "Horizontal Shower Heat Exchanger as an Effective Domestic Hot Water Heating Alternative," Energies, MDPI, vol. 15(13), pages 1-22, July.
    2. Sabina Kordana-Obuch & Mariusz Starzec & Daniel Słyś, 2021. "Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences," Energies, MDPI, vol. 14(17), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9992-:d:453474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.