IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10173-d457441.html
   My bibliography  Save this article

The Numerical Diffusion Effect on the CFD Simulation Accuracy of Velocity and Temperature Field for the Application of Sustainable Architecture Methodology

Author

Listed:
  • Vladimíra Michalcová

    (Department of Structural Mechanics, Faculty of Civil Engineering, VSB—Technical University of Ostrava, Ludvíka Podéště 1875/17, 708 33 Ostrava-Poruba, Czech Republic)

  • Kamila Kotrasová

    (Institute of Structural Engineering, Faculty of Civil Engineering, The Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovakia)

Abstract

Numerical simulation of fluid flow and heat or mass transfer phenomenon requires numerical solution of Navier–Stokes and energy-conservation equations, together with the continuity equation. The basic problem of solving general transport equations by the Finite Volume Method (FVM) is the exact calculation of the transport quantity. Numerical or false diffusion is a phenomenon of inserting errors in calculations that threaten the accuracy of the computational solution. The paper compares the physical accuracy of the calculation in the Computational Fluid Dynamics (CFD) code in Ansys Fluent using the offered discretization calculation schemes, methods of solving the gradients of the transport quantity on the cell walls, and the influence of the mesh type. The paper offers possibilities on how to reduce numerical errors. In the calculation area, the sharp boundary of two areas with different temperatures is created in the flow direction. The three-dimensional (3D) stationary flow of the fictitious gas is simulated using FVM so that only advective transfer, in terms of momentum and heat, arises. The subject of the study is to determine the level of numerical diffusion (temperature field scattering) and to evaluate the values of the transport quantity (temperature), which are outside the range of specified boundary conditions at variously set calculation parameters.

Suggested Citation

  • Vladimíra Michalcová & Kamila Kotrasová, 2020. "The Numerical Diffusion Effect on the CFD Simulation Accuracy of Velocity and Temperature Field for the Application of Sustainable Architecture Methodology," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10173-:d:457441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenzhou Zhong & Tong Zhang & Tetsuro Tamura, 2019. "CFD Simulation of Convective Heat Transfer on Vernacular Sustainable Architecture: Validation and Application of Methodology," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konrad Nering & Krzysztof Nering, 2021. "Validation of Modified Algebraic Model during Transitional Flow in HVAC Duct," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Piotr Michalak, 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building," Energies, MDPI, vol. 14(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10173-:d:457441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.