IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10036-d454455.html
   My bibliography  Save this article

Numerical Simulation of the Interaction between Fibre Concrete Slab and Subsoil—The Impact of Selected Determining Factors

Author

Listed:
  • Lukas Duris

    (Department of Geotechnics and Underground Engineering, Faculty of Civil Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

  • Eva Hrubesova

    (Department of Geotechnics and Underground Engineering, Faculty of Civil Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic)

Abstract

Shape and material optimization of building structures, including reducing the amount of concrete used, are very important aspects in sustainable construction. Numerical modelling is currently used very effectively to design optimized and sustainable structures, including their interaction with the surrounding rock environment. This paper is focused on the three selected factors of numerical modelling of fibre concrete slab and subsoil interaction: (1) the constitutive model of fibre concrete slab, (2) deformational and strength characteristics of subsoil, (3) effect of interface elements. The specialized geotechnical software Midas GTS NX, based on the finite element method, was used for the modelling of this task. Numerical results were compared with the experimental measurement of vertical displacements on the upper surface of slab. In the presented study, three constitutive models of slab recommended in MIDAS GTS NX code for modelling concrete behaviour (elastic, Mohr-Coulomb and Drucker-Prager) were applied. In addition, the sensitivity analysis with respect to the deformational and strength characteristics of subsoil was performed. The numerical study also presents the effect of the interface elements application on the slab behaviour. The numerical results of maximum vertical displacements based on the Drucker-Prager and elastic model underestimated both the experimental results and numerical results based on the Mohr-Coulomb model. From the qualitative point of view (shape of deflection curve), the numerical simulation showed the better agreement of the Mohr-Coulomb constitutive model with the experimental measurements in comparison with the other two investigated constitutive models. The performed parametric study documented that reduction of the strength and deformational characteristics of subsoil leads to the increase of maximum vertical displacements in the centre of slab, but the experimentally measured deflection curve, including uplift of slab and gapping occurrence between the slab and subsoil, was not achieved without the interface application.

Suggested Citation

  • Lukas Duris & Eva Hrubesova, 2020. "Numerical Simulation of the Interaction between Fibre Concrete Slab and Subsoil—The Impact of Selected Determining Factors," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10036-:d:454455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radim Cajka & Zuzana Marcalikova & Marie Kozielova & Pavlina Mateckova & Oldrich Sucharda, 2020. "Experiments on Fiber Concrete Foundation Slabs in Interaction with the Subsoil," Sustainability, MDPI, vol. 12(9), pages 1-21, May.
    2. Eva Hrubesova & Marek Mohyla & Hynek Lahuta & Tuan Quang Bui & Phi Dinh Nguyen, 2018. "Experimental Analysis of Stresses in Subsoil below a Rectangular Fiber Concrete Slab †," Sustainability, MDPI, vol. 10(7), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiri Brozovsky & Radim Cajka & Zdenka Neuwirthova, 2021. "Parallel Code Execution as a Tool for Enhancement of the Sustainable Design of Foundation Structures," Sustainability, MDPI, vol. 13(3), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiri Brozovsky & Radim Cajka & Zdenka Neuwirthova, 2021. "Parallel Code Execution as a Tool for Enhancement of the Sustainable Design of Foundation Structures," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    2. Radim Cajka & Zuzana Marcalikova & Vlastimil Bilek & Oldrich Sucharda, 2020. "Numerical Modeling and Analysis of Concrete Slabs in Interaction with Subsoil," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    3. Martin Stolarik & Miroslav Pinka & Jan Nedoma & Michael Fridrich, 2020. "Variability of Seismic Loading over the Surface of a Concrete Slab in Interaction with the Subsoil," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    4. Radim Cajka & Zuzana Marcalikova & Marie Kozielova & Pavlina Mateckova & Oldrich Sucharda, 2020. "Experiments on Fiber Concrete Foundation Slabs in Interaction with the Subsoil," Sustainability, MDPI, vol. 12(9), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10036-:d:454455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.