IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p9230-d440856.html
   My bibliography  Save this article

A Study on Mechanical Properties of Concrete Incorporating Aluminum Dross, Fly Ash, and Quarry Dust

Author

Listed:
  • Mohamed Hamdy Elseknidy

    (Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia)

  • Ali Salmiaton

    (Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
    Sustainable Process Engineering Research Centre, Faculty of Engineering, University of Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia)

  • Ishak Nor Shafizah

    (Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia)

  • Ahmed Hassan Saad

    (Department of Civil Engineering, Faculty of Engineering, University of Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia)

Abstract

The amount of waste, associated waste disposal costs, and environmental contamination may be minimized by identifying effective recycling approaches. These promising approaches will also lead to the protection of natural resources and economic gains. One example of waste disposal maybe by using it as a filling material or as a pozzolanic material for the production of concrete. In this regard, this study proposes to partially replace cement with aluminum dross and fly ash, and partially replace natural sand with quarry dust. Aluminum dross, cement, sand, and quarry dust were used in a variety of proportions with a constant percentage of fly ash for the design of nine concrete mixtures. Aluminum dross was replaced by 5, 10, 15, and 20% of the cement mass. At first, the optimum replacement of aluminum dross without using quarry dust was determined at a constant percentage of fly ash-15% based on the strength results. Later, by introducing the optimum substitution of aluminum dross with cement and fly ash, the quarry dust was partially replaced at 10, 20, 30, and 40% of river sand to determine the overall optimum mix. The mechanical and durability characteristics of the concrete using the three mixtures were analyzed. It has been observed that the mechanical and durability characteristics of a concrete mixture incorporating a fly ash-15%, aluminum dross-10%, and quarry dust-20% are better than that of standard concrete. Production of concrete using industrial waste can minimize infrastructure construction costs and reduce environmental impacts.

Suggested Citation

  • Mohamed Hamdy Elseknidy & Ali Salmiaton & Ishak Nor Shafizah & Ahmed Hassan Saad, 2020. "A Study on Mechanical Properties of Concrete Incorporating Aluminum Dross, Fly Ash, and Quarry Dust," Sustainability, MDPI, vol. 12(21), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9230-:d:440856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/9230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/9230/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Xue & Mingqi Zhang & Jizhi Zhou & Yufeng Zhang, 2022. "Efficient Al Recovery from Aluminum Dross with Simultaneous AlN Separation by a Mechanical Method," Waste, MDPI, vol. 1(1), pages 1-12, September.
    2. Buthainah Nawaf AL-Kharabsheh & Mohamed Moafak Arbili & Ali Majdi & Jawad Ahmad & Ahmed Farouk Deifalla & A. Hakamy & Hasan Majed Alqawasmeh, 2022. "Feasibility Study on Concrete Made with Substitution of Quarry Dust: A Review," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    3. Ahmed Hassan Saad & Haslinda Nahazanan & Badronnisa Yusuf & Siti Fauziah Toha & Ahmed Alnuaim & Ahmed El-Mouchi & Mohamed Elseknidy & Angham Ali Mohammed, 2023. "A Systematic Review of Machine Learning Techniques and Applications in Soil Improvement Using Green Materials," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    4. Young-Yeop Kim & Hyun-Min Yang & Han-Seung Lee, 2021. "Preparation and Properties of Sustainable Concrete Using Activated Sludge of Industrial By-Products," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    5. Joyce Nakayenga & Mutsuko Inui & Toshiro Hata, 2022. "Study on the Effect of Amorphous Silica from Waste Granite Powder on the Strength Development of Cement-Treated Clay for Soft Ground Improvement," Sustainability, MDPI, vol. 14(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9230-:d:440856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.