Author
Listed:
- Leticia Y. Kochi
(Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Paraná, Brazil
Both authors contributed equality to this work.)
- Patricia L. Freitas
(Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Paraná, Brazil
Both authors contributed equality to this work.)
- Leila T. Maranho
(Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Paraná, Brazil)
- Philippe Juneau
(Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada)
- Marcelo P. Gomes
(Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Paraná, Brazil)
Abstract
There is growing concern among health institutions worldwide to supply clean water to their populations, especially to more vulnerable communities. Although sewage treatment systems can remove most contaminants, they are not efficient at removing certain substances that can be detected in significant quantities even after standard treatments. Considering the necessity of perfecting techniques that can remove waterborne contaminants, constructed wetland systems have emerged as an effective bioremediation solution for degrading and removing contaminants. In spite of their environmentally friendly appearance and efficiency in treating residual waters, one of the limiting factors to structure efficient artificial wetlands is the choice of plant species that can both tolerate and remove contaminants. For sometimes, the chosen plants composing a system were not shown to increase wetland performance and became a problem since the biomass produced must have appropriated destination. We provide here an overview of the use and role of aquatic macrophytes in constructed wetland systems. The ability of plants to remove metals, pharmaceutical products, pesticides, cyanotoxins and nanoparticles in constructed wetlands were compared with the removal efficiency of non-planted systems, aiming to evaluate the capacity of plants to increase the removal efficiency of the systems. Moreover, this review also focuses on the management and destination of the biomass produced through natural processes of water filtration. The use of macrophytes in constructed wetlands represents a promising technology, mainly due to their efficiency of removal and the cost advantages of their implantation. However, the choice of plant species composing constructed wetlands should not be only based on the plant removal capacity since the introduction of invasive species can become an ecological problem.
Suggested Citation
Leticia Y. Kochi & Patricia L. Freitas & Leila T. Maranho & Philippe Juneau & Marcelo P. Gomes, 2020.
"Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution,"
Sustainability, MDPI, vol. 12(21), pages 1-21, November.
Handle:
RePEc:gam:jsusta:v:12:y:2020:i:21:p:9202-:d:440593
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Olivia Celeste Overton & Leif Hans Olson & Sreemala Das Majumder & Hani Shwiyyat & Mary Elizabeth Foltz & Robert William Nairn, 2023.
"Wetland Removal Mechanisms for Emerging Contaminants,"
Land, MDPI, vol. 12(2), pages 1-37, February.
- Fabio Conti & Elena Cristina Rada & Paolo Viotti & Massimo Raboni, 2021.
"Removal and Survival of Fecal Indicators in a Constructed Wetland after UASB Pre-Treatment,"
Sustainability, MDPI, vol. 13(16), pages 1-16, August.
- Sile Hu & Hui Zhu & Gary Bañuelos & Brian Shutes & Xinyi Wang & Shengnan Hou & Baixing Yan, 2023.
"Factors Influencing Gaseous Emissions in Constructed Wetlands: A Meta-Analysis and Systematic Review,"
IJERPH, MDPI, vol. 20(5), pages 1-20, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:9202-:d:440593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.