Author
Listed:
- Dimitra Tsirigoti
(Laboratory of Building Construction and Building Physics, Faculty of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)
- Christina Giarma
(Laboratory of Building Construction and Building Physics, Faculty of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)
- Katerina Tsikaloudaki
(Laboratory of Building Construction and Building Physics, Faculty of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)
Abstract
The complicated nature of indoor environmental quality (IEQ) (thermal, visual, acoustic comfort, etc.) dictates a multi-fold approach for desirable IEQ levels to be achieved. The improvement of building shells’ thermal performance, imposed by the constantly revised buildings’ energy performance regulations, does not necessarily guarantee the upgrade of all IEQ-related aspects, such as the construction’s acoustic quality, as most of the commonly used insulation materials are characterized by their low acoustic performance properties. From this perspective the SUstainable PReconstructed Innovative Module (SU.PR.I.M.) research project investigates a new, innovative preconstructed building module with advanced characteristics, which can, among other features, provide a high quality of acoustic performance in the indoor space. The module consists of two reinforced concrete vertical panels, between which the load bearing steel profiles are positioned. In the cavity and at the exterior surface of the panel there is a layer of thermal insulation. For the scope of the analysis, different external finishing surfaces are considered, including cladding with slate and brick, and different cavity insulation materials are examined. The addition of Phase Change Materials (PCM) in different mix proportions in the interior concrete panel is also examined. For the calculation of the sound insulation performance of the building module the INSUL 9.0 software is used. The results were validated through an experimental measurement in the laboratory in order to test the consistency of the values obtained. The results indicate that the examined preconstructed module can cover the sound insulation national regulation’s performance limits, but the implementation of such panels in building constructions should be carefully considered in case of lower frequency noise environments.
Suggested Citation
Dimitra Tsirigoti & Christina Giarma & Katerina Tsikaloudaki, 2020.
"Indoor Acoustic Comfort Provided by an Innovative Preconstructed Wall Module: Sound Insulation Performance Analysis,"
Sustainability, MDPI, vol. 12(20), pages 1-21, October.
Handle:
RePEc:gam:jsusta:v:12:y:2020:i:20:p:8666-:d:431253
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8666-:d:431253. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.