IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8150-d423070.html
   My bibliography  Save this article

Differential Pricing and Emission Reduction in Remanufacturing Supply Chains with Dual-Sale Channels under CCT-Mechanism

Author

Listed:
  • Kaifu Yuan

    (School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Guangqiang Wu

    (School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Hui Dong

    (School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)

  • Bo He

    (School of Economics and Business Administration, Chongqing University, Chongqing 400000, China)

  • Dafei Wang

    (School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550025, China)

Abstract

In order to make optimal decisions for pricing and emission reduction, a remanufacturing supply chain system with dual-sale channels is investigated. With regard to the preferences of consumers for different channels and carbon cap-and-trade mechanisms, profit-maximization models are developed on supply chain members and systems in decentralized and centralized cases. Based on a backward induction, the corresponding formulae for decision variables are obtained. Then the effect of the industry emission control coefficient is analyzed and the optimal decisions of two cases are compared. Finally, the coordination mechanism and numerical analysis are presented. The result indicates that: (1) As the free carbon allowances granted by the government to the manufacturer increases, the investment in carbon reduction from the manufacturer will increase. As the industry emission control coefficient increases, the carbon emissions per product and the prices of new and remanufactured products will decrease, while the demands of the new and remanufactured products and the profits of supply chain members and systems will increase. (2) As the direct sale channel preference coefficient increases, the profits of the manufacturer and the system will increase while the retailer’s profit will decrease. Correspondingly, the carbon emissions of unit product will decrease, and the sales of the direct sale channel will increase while the sales of the retail channel will decrease. (3) The decision in the coordinated case not only ensures emission reduction and system profit to reach the level of the centralized case, but also raises the profits of supply chain members in the decentralized case. Therefore, it is preferable to other decisions. (4) As the carbon trading price increases, the emission reduction investment from the manufacturer will increase while the profits of the supply chain and its members will increase.

Suggested Citation

  • Kaifu Yuan & Guangqiang Wu & Hui Dong & Bo He & Dafei Wang, 2020. "Differential Pricing and Emission Reduction in Remanufacturing Supply Chains with Dual-Sale Channels under CCT-Mechanism," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8150-:d:423070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gan, Shu-San & Pujawan, I. Nyoman & Suparno, & Widodo, Basuki, 2017. "Pricing decision for new and remanufactured product in a closed-loop supply chain with separate sales-channel," International Journal of Production Economics, Elsevier, vol. 190(C), pages 120-132.
    2. He, Peng & He, Yong & Xu, Henry, 2019. "Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy," International Journal of Production Economics, Elsevier, vol. 213(C), pages 108-123.
    3. Gan, Shu San & Pujawan, I. Nyoman & Suparno, & Widodo, Basuki, 2015. "Pricing decision model for new and remanufactured short-life cycle products with time-dependent demand," Operations Research Perspectives, Elsevier, vol. 2(C), pages 1-12.
    4. Yenipazarli, Arda, 2016. "Managing new and remanufactured products to mitigate environmental damage under emissions regulation," European Journal of Operational Research, Elsevier, vol. 249(1), pages 117-130.
    5. Ding, Qing & Dong, Ciwei & Pan, Zhicong, 2016. "A hierarchical pricing decision process on a dual-channel problem with one manufacturer and one retailer," International Journal of Production Economics, Elsevier, vol. 175(C), pages 197-212.
    6. Ze-Bin Wang & Yao-Yu Wang & Jian-Cai Wang, 2016. "Optimal distribution channel strategy for new and remanufactured products," Electronic Commerce Research, Springer, vol. 16(2), pages 269-295, June.
    7. Tong Shu & Chunfen Huang & Shou Chen & Shouyang Wang & Kin Keung Lai, 2018. "Trade-Old-for-Remanufactured Closed-Loop Supply Chains with Carbon Tax and Government Subsidies," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    8. Chang, Xiangyun & Xia, Haiyang & Zhu, Huiyun & Fan, Tijun & Zhao, Hongqing, 2015. "Production decisions in a hybrid manufacturing–remanufacturing system with carbon cap and trade mechanism," International Journal of Production Economics, Elsevier, vol. 162(C), pages 160-173.
    9. Chai, Qiangfei & Xiao, Zhongdong & Lai, Kee-hung & Zhou, Guanghui, 2018. "Can carbon cap and trade mechanism be beneficial for remanufacturing?," International Journal of Production Economics, Elsevier, vol. 203(C), pages 311-321.
    10. Soumita Kundu & Tripti Chakrabarti, 2018. "Impact of carbon emission policies on manufacturing, remanufacturing and collection of used item decisions with price dependent return rate," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 532-555, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nesrin Ada & Manavalan Ethirajan & Anil Kumar & Vimal K.E.K & Simon Peter Nadeem & Yigit Kazancoglu & Jayakrishna Kandasamy, 2021. "Blockchain Technology for Enhancing Traceability and Efficiency in Automobile Supply Chain—A Case Study," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    2. Syed Asif Raza, 2020. "Price Differentiation and Inventory Decisions in a Socially Responsible Dual-Channel Supply Chain with Partial Information Stochastic Demand and Cannibalization," Sustainability, MDPI, vol. 12(22), pages 1-42, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    2. Niu, Baozhuang & Ruan, Yiyuan & Yu, Xinhu, 2024. "Purchasing new for remanufacturing: Sourcing co-opetition, tax-planning and data validation," International Journal of Production Economics, Elsevier, vol. 273(C).
    3. Tong Shu & Qian Liu & Shou Chen & Shouyang Wang & Kin Keung Lai, 2018. "Pricing Decisions of CSR Closed-Loop Supply Chains with Carbon Emission Constraints," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    4. Yang, Lei & Hu, Yijuan & Huang, Lijuan, 2020. "Collecting mode selection in a remanufacturing supply chain under cap-and-trade regulation," European Journal of Operational Research, Elsevier, vol. 287(2), pages 480-496.
    5. Luo, Ruiling & Zhou, Li & Song, Yang & Fan, Tijun, 2022. "Evaluating the impact of carbon tax policy on manufacturing and remanufacturing decisions in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 245(C).
    6. Lijun Meng & Qiang Qiang & Zuqing Huang & Baoyou Zhang & Yuxiang Yang, 2020. "Optimal Pricing Strategy and Government Consumption Subsidy Policy in Closed-Loop Supply Chain with Third-Party Remanufacturer," Sustainability, MDPI, vol. 12(6), pages 1-29, March.
    7. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    8. Zhang, Ling & Zhang, Zheng, 2022. "Dynamic analysis of the decision of authorized remanufacturing supply chain affected by government subsidies under cap-and-trade policies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Chen, Yuyu & Li, Bangyi & Zhang, Guoqing & Bai, Qingguo, 2020. "Quantity and collection decisions of the remanufacturing enterprise under both the take-back and carbon emission capacity regulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    10. Xu, Song & Govindan, Kannan & Wang, Wanru & Yang, Wenting, 2024. "Supply chain management under cap-and-trade regulation: A literature review and research opportunities," International Journal of Production Economics, Elsevier, vol. 271(C).
    11. Li, Sijie & Zheng, Bin & Jia, Dongfeng, 2024. "Optimal decisions for hybrid manufacturing and remanufacturing with trade-in program and carbon tax," Omega, Elsevier, vol. 124(C).
    12. Liu, Zhuojun & Chen, Jing & Diallo, Claver & Venkatadri, Uday, 2021. "Pricing and production decisions in a dual-channel closed-loop supply chain with (re)manufacturing," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. You Qiu & Youliang Jin, 2022. "Impact of environmental taxes on remanufacturing decisions of a duopoly," Economic Change and Restructuring, Springer, vol. 55(4), pages 2479-2498, November.
    14. Xiqiang Xia & Mengya Li & Biao Li & Hao Wang, 2021. "The Impact of Carbon Trade on Outsourcing Remanufacturing," IJERPH, MDPI, vol. 18(20), pages 1-18, October.
    15. Yanfen Mu & Feng Niu, 2022. "To Be or Not to Be? Strategic Analysis of Carbon Tax Guiding Manufacturers to Choose Low-Carbon Technology," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    16. Deepak Singhal & Sarat Kumar Jena & Satyabrata Aich & Sushanta Tripathy & Hee-Cheol Kim, 2021. "Remanufacturing for Circular Economy: Understanding the Impact of Manufacturer’s Incentive under Price Competition," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    17. Taleizadeh, Ata Allah & Sadeghi, Razieh, 2019. "Pricing strategies in the competitive reverse supply chains with traditional and e-channels: A game theoretic approach," International Journal of Production Economics, Elsevier, vol. 215(C), pages 48-60.
    18. Sun, Cuiying & Zhang, Xiong & Zhou, Yong-Wu & Cao, Bin, 2022. "Pricing, financing and channel structure for capital-constrained dual-channel supply chains with product heterogeneity," International Journal of Production Economics, Elsevier, vol. 253(C).
    19. Chenxu Ke & Bo Yan & Jingna Ji, 2023. "Pricing new and remanufactured products under patent protection and government intervention," Annals of Operations Research, Springer, vol. 324(1), pages 131-161, May.
    20. Yang Lv & Xinhua Bi & Quanxi Li & Haowei Zhang, 2022. "Research on Closed-Loop Supply Chain Decision Making and Recycling Channel Selection under Carbon Allowance and Carbon Trading," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8150-:d:423070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.