IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7380-d410770.html
   My bibliography  Save this article

Mechanical and Durability Properties of Cement-Stabilized Recycled Concrete Aggregate

Author

Listed:
  • Qingfu Li

    (School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450003, China)

  • Jing Hu

    (School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450003, China)

Abstract

This research investigates the effect of using recycled concrete aggregate (RCA) as a partial replacement of natural aggregate (NA) on the mechanical and durability-related properties of a cement-stabilized recycled concrete aggregate (CSR) mixture. In this case, mixtures were prepared with 0%, 40%, 70%, and 100% (by weight) RCA to replace NA, and cement contents of 4%, 5%, and 6% were used in this study. Test parameters included the replacement ratio, cement content, and curing time. Tests were carried out to establish the unconfined compressive strength (UCS), indirect tensile strength (ITS), drying shrinkage, and water loss ratio of each mix proportion. The preliminary results of UCS and ITS tests indicated that the incorporation of RCA resulted in a decrease of strength compared with a cement-stabilized macadam (CSM) mixture, but the seven-day strength of the CSR mixture met the related requirements of road bases. The increase in cement content and curing time had an obvious effect on strength improvement. The drying shrinkage test showed that the drying shrinkage properties of the CSR mixture were obviously reduced with a high replacement ratio. It is evident that the CSM mixture presented a better drying shrinkage performance than that of the CSR mixture.

Suggested Citation

  • Qingfu Li & Jing Hu, 2020. "Mechanical and Durability Properties of Cement-Stabilized Recycled Concrete Aggregate," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7380-:d:410770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Rauf Shaker & Mayurkumar Bhalala & Qayoum Kargar & Byungik Chang, 2020. "Evaluation of Alternative Home-Produced Concrete Strength with Economic Analysis," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Penghui Wen & Chaohui Wang & Liang Song & Liangliang Niu & Haoyu Chen, 2021. "Durability and Sustainability of Cement-Stabilized Materials Based on Utilization of Waste Materials: A Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    2. Mazen J. Al-Kheetan & Juliana Byzyka & Seyed Hamidreza Ghaffar, 2021. "Sustainable Valorisation of Silane-Treated Waste Glass Powder in Concrete Pavement," Sustainability, MDPI, vol. 13(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İlbüke Uslu & Orkun Uysal & Can B. Aktaş & Byungik Chang & İsmail Özgür Yaman, 2024. "Dematerialization of Concrete: Meta-Analysis of Lightweight Expanded Clay Concrete for Compressive Strength," Sustainability, MDPI, vol. 16(15), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7380-:d:410770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.