IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7017-d405334.html
   My bibliography  Save this article

Remediation of Polluted River Water by Biological, Chemical, Ecological and Engineering Processes

Author

Listed:
  • Hossain Md Anawar

    (Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
    Asia-Pacific Science Center Pte. Ltd., Singapore 534818, Singapore)

  • Rezaul Chowdhury

    (School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Australia)

Abstract

Selection of appropriate river water treatment methods is important for the restoration of river ecosystems. An in-depth review of different river water treatment technologies has been carried out in this study. Among the physical-engineering processes, aeration is an effective, sustainable and popular technique which increases microbial activity and degrades organic pollutants. Other engineering techniques (water diversion, mechanical algae removal, hydraulic structures and dredging) are effective as well, but they are cost intensive and detrimental to river ecosystems. Riverbank filtration is a natural, slow and self-sustainable process which does not pose any adverse effects. Chemical treatments are criticised for their short-term solution, high cost and potential for secondary pollution. Ecological engineering-based techniques are preferable due to their high economic, environmental and ecological benefits, their ease of maintenance and the fact that they are free from secondary pollution. Constructed wetlands, microbial dosing, ecological floating beds and biofilms technologies are the most widely applicable ecological techniques, although some variabilities are observed in their performances. Constructed wetlands perform well under low hydraulic and pollutant loads. Sequential constructed wetland floating bed systems can overcome this limitation. Ecological floating beds are highly recommended for their low cost, high effectiveness and optimum plant growth facilities.

Suggested Citation

  • Hossain Md Anawar & Rezaul Chowdhury, 2020. "Remediation of Polluted River Water by Biological, Chemical, Ecological and Engineering Processes," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7017-:d:405334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7017/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lanqing Qiu & Ping Yu & Shaofei Li & Huixin Ma & Danying Li & Jianzhu Li, 2022. "Water Purification Effect of Ecological Floating Bed Combination Based on the Numerical Simulation," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    2. Jens Gudmundsson & Jens Leth Hougaard, 2021. "River pollution abatement: Decentralized solutions and smart contracts," IFRO Working Paper 2021/07, University of Copenhagen, Department of Food and Resource Economics, revised Oct 2021.
    3. Djesser Zechner Sergio & Alexandra Rodrigues Finotti, 2023. "Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    4. Yean Ling Pang & Yen Ying Quek & Steven Lim & Siew Hoong Shuit, 2023. "Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    5. repec:zib:zibwcm:v:7:y:2023:i:1:p:55-59 is not listed on IDEAS
    6. Tannia Vargas-Tierras & Sandra Suárez-Cedillo & Vanessa Morales-León & Yadira Vargas-Tierras & Leider Tinoco-Jaramillo & William Viera-Arroyo & Wilson Vásquez-Castillo, 2023. "Ecological River Water Quality Based on Macroinvertebrates Present in the Ecuadorian Amazon," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    7. Wenqing Song & Shizhuo Wang & Jiang Zhao & Shiliang Xu & Xuefei Zhou & Yalei Zhang, 2023. "Comprehensive Treatment for River Pollution in a Coastal City with a Complex River Network: A Case Study in Sanya, China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    8. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    9. Liying Gong & Xuanxuan Zhao & Guangcan Zhu, 2022. "Pathways of Nitrogen and Phosphorus Utilization and Removal from Cyanobacteria Wastewater by Combining Constructed Wetlands with Aerobic Reactors," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    10. Hang Yin & Wenyan Liang & Xin Cao, 2022. "Self-Purification Mode of Still-Water Ponds in Urban Parks Based on In Situ Ecological Remediation Design," Land, MDPI, vol. 11(10), pages 1-25, September.
    11. Shan Ren & Pei Song & Haichun Cheng & Chao Liu & Rongsheng Chen, 2022. "Enhanced Treatment of Decentralized Domestic Sewage Using Gravity-Flow Multi-Soil-Layering Systems Coupled with Iron-Carbon Microelectrolysis," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    12. He Huang & Yong Zhou & Yu-Jie Liu & Liang Xiao & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2021. "Source Apportionment and Ecological Risk Assessment of Potentially Toxic Elements in Cultivated Soils of Xiangzhou, China: A Combined Approach of Geographic Information System and Random Forest," Sustainability, MDPI, vol. 13(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7017-:d:405334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.