IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5598-d383429.html
   My bibliography  Save this article

An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills

Author

Listed:
  • Marco Vocciante

    (DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, 16146 Genova, Italy)

  • Valery Meshalkin

    (Department of Logistics and Economic Informatics, Mendeleev University of Chemical Technology, 125047 Moscow, Russia)

Abstract

Leaks from landfills to underlying soil layers are one of the main problems that endanger the sustainability of waste disposal in landfills. Indeed, the possible failing of in-situ equipment can give rise to serious pollution consequences or costly inspection work in the landfill body. In this paper, we develop the time dependent mathematical relationship between the concentration of water at the surface of the landfill and the flux at the bottom of the landfill. This makes it possible to detect a leak using non-expensive measurements made at the surface of the landfill. The resulting model is obtained by analytically solving Richard’s equation with a piecewise linear boundary condition at the bottom. The unknown coefficients of the piecewise linear functions, which can be estimated using the measurements at the surface, provide the necessary information for detecting leaks. The algorithm has been numerically tested using simulated data of rain precipitation. The method proposed could be conveniently used to complement the usual monitoring techniques due to the limited costs of its implementation.

Suggested Citation

  • Marco Vocciante & Valery Meshalkin, 2020. "An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5598-:d:383429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pietrelli, Loris & Ferro, Sergio & Vocciante, Marco, 2019. "Eco-friendly and cost-effective strategies for metals recovery from printed circuit boards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 317-323.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nassani, Abdelmohsen A. & Awan, Usama & Zaman, Khalid & Hyder, Shabir & Aldakhil, Abdullah Mohammed & Abro, Muhammad Moinuddin Qazi, 2019. "Management of natural resources and material pricing: Global evidence," Resources Policy, Elsevier, vol. 64(C).
    2. Gazi Murat Duman & Elif Kongar, 2023. "ESG Modeling and Prediction Uncertainty of Electronic Waste," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5598-:d:383429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.