Author
Listed:
- Theano Samara
(Forest Research Institute of Thessaloniki, ELGO-DEMETER, 57006 Thessaloniki, Greece)
- Ioannis Spanos
(Forest Research Institute of Thessaloniki, ELGO-DEMETER, 57006 Thessaloniki, Greece)
- Panagiotis Platis
(Forest Research Institute of Thessaloniki, ELGO-DEMETER, 57006 Thessaloniki, Greece)
- Thomas G. Papachristou
(Forest Research Institute of Thessaloniki, ELGO-DEMETER, 57006 Thessaloniki, Greece)
Abstract
The main objective of this research was to study heavy metal absorption by the leaves of main forest species which were planted for that purpose at post-lignite mining landscapes in Northern Greece (Ptolemais, Prefecture of Kozani), as well as in a neighboring region (Kato Grammatiko), 30 km far from the mining area. Four species were studied; two conifers ( Pinus nigra Arn., Cupressus arizonica Greene) and two broad-leaved ( Robinia pseudoacacia L., Populus nigra L.). The four species varied in their leaf morphology (needles, scale-like leaves, blade, compound or simple, with rough or smooth surfaces). Eighty (80) leaf samples were collected, (10 from each tree species at either site). The heavy metal concentrations measured were iron (Fe), copper (Cu), chromium (Cr), nickel (Ni), cadmium (Cd), manganese (Mn), zinc (Zn) and cobalt (Co). Statistically significant differences ( p = 0.01) were found between the lignite deposit and control areas and among the studied species. Higher concentrations were measured for the studied species at the lignite deposit. Moreover, no species demonstrated maximum absorption for all metals. The metal absorption pattern by coniferous trees’ leaves at the mining landscape was similar, with highest concentrations observed for iron and lowest for cobalt [iron (Fe) > zinc (Zn) > manganese (Mn) > copper (Cu) > chromium (Cr) > nickel (Ni) > cobalt (Co)]. Both broadleaved species absorbed highest concentrations of iron, but differed in the amount of the remaining metals [black locust: iron (Fe) > manganese (Mn) > zinc (Zn) > copper (Cu) > nickel (Ni) > chromium (Cr); black poplar: iron (Fe) > zinc (Zn) > manganese (Mn) > copper (Cu) > nickel (Ni) > chromium (Cr) > cobalt (Co)]. Cadmium was detected only in black poplar at both sites. In general, black pine was found to absorb the highest concentration of iron (Fe), and black poplar zinc (Zn). We discuss the importance of carefully selecting the appropriate mixture of tree species in order to achieve maximum habitat restoration effect at heavy metal polluted sites.
Suggested Citation
Theano Samara & Ioannis Spanos & Panagiotis Platis & Thomas G. Papachristou, 2020.
"Heavy Metal Retention by Different Forest Species Used for Restoration of Post-Mining Landscapes, N. Greece,"
Sustainability, MDPI, vol. 12(11), pages 1-9, May.
Handle:
RePEc:gam:jsusta:v:12:y:2020:i:11:p:4453-:d:365149
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4453-:d:365149. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.