IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4381-d363475.html
   My bibliography  Save this article

Shear-Torque Fatigue Performance of Geogrid-Reinforced Asphalt Interlayers

Author

Listed:
  • Davide Ragni

    (Department of Civil and Building Engineering and Architecture, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy)

  • Francesco Canestrari

    (Department of Civil and Building Engineering and Architecture, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy)

  • Fatima Allou

    (Laboratoire GC2D, Université de Limoges, Bd J. Derche, 19300 Egletons, France)

  • Christophe Petit

    (Laboratoire GC2D, Université de Limoges, Bd J. Derche, 19300 Egletons, France)

  • Anne Millien

    (Laboratoire GC2D, Université de Limoges, Bd J. Derche, 19300 Egletons, France)

Abstract

Interlayer reinforcement systems represent a valid solution to improve performance and extend the service life of asphalt pavements, reducing maintenance costs. The main issue is that the presence of reinforcement may hinder the full transmission of stresses between asphalt layers, reducing the overall pavement bearing capacity. This study aimed at evaluating the mechanical behavior of geogrid-reinforced asphalt interlayers under cyclic shear loading. To this purpose, a trial section, characterized by three types of interface (reinforced with carbon fiber grid, reinforced with glass fiber grid and unreinforced), was built. Cores were taken from the trial section to carry out shear-torque fatigue tests. Static Leutner shear tests were also performed on cored specimens having the same interface configuration. From data gathered in the present study, shear-torque fatigue tests have proved to be a powerful tool for investigating reinforced specimens. Results clearly ranked the investigated materials, showing that the glass fiber grid has the lowest shear fatigue performance in comparison with the other two interfaces at 20 °C. However, the shear fatigue resistance of glass fiber grid increases significantly at 10 °C. Finally, an interesting correlation was found between cyclic and static shear test results that should be better investigated in future studies.

Suggested Citation

  • Davide Ragni & Francesco Canestrari & Fatima Allou & Christophe Petit & Anne Millien, 2020. "Shear-Torque Fatigue Performance of Geogrid-Reinforced Asphalt Interlayers," Sustainability, MDPI, vol. 12(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4381-:d:363475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. Shane Underwood & Zack Guido & Padmini Gudipudi & Yarden Feinberg, 2017. "Increased costs to US pavement infrastructure from future temperature rise," Nature Climate Change, Nature, vol. 7(10), pages 704-707, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaning Qiao & Eshan Dave & Tony Parry & Omar Valle & Lingyun Mi & Guodong Ni & Zhenmin Yuan & Yuefeng Zhu, 2019. "Life Cycle Costs Analysis of Reclaimed Asphalt Pavement (RAP) Under Future Climate," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    2. Geoffrey Guest & Jieying Zhang & Omran Maadani & Hamidreza Shirkhani, 2020. "Incorporating the impacts of climate change into infrastructure life cycle assessments: A case study of pavement service life performance," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 356-368, April.
    3. Waqas Rafiq & Muhammad Ali Musarat & Muhammad Altaf & Madzlan Napiah & Muslich Hartadi Sutanto & Wesam Salah Alaloul & Muhammad Faisal Javed & Amir Mosavi, 2021. "Life Cycle Cost Analysis Comparison of Hot Mix Asphalt and Reclaimed Asphalt Pavement: A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    4. Mohamed Ezzat Al-Atroush & Abdulrahman Marouf & Mansour Aloufi & Mohamed Marouf & Tamer A. Sebaey & Yasser E. Ibrahim, 2022. "Structural Performance Assessment of Geothermal Asphalt Pavements: A Comparative Experimental Study," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    5. James E. Neumann & Paul Chinowsky & Jacob Helman & Margaret Black & Charles Fant & Kenneth Strzepek & Jeremy Martinich, 2021. "Climate effects on US infrastructure: the economics of adaptation for rail, roads, and coastal development," Climatic Change, Springer, vol. 167(3), pages 1-23, August.
    6. Yaning Qiao & Andrew R. Dawson & Tony Parry & Gerardo Flintsch & Wenshun Wang, 2020. "Flexible Pavements and Climate Change: A Comprehensive Review and Implications," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    7. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    8. Yaning Qiao & Joao Santos & Anne M.K. Stoner & Gerardo Flinstch, 2020. "Climate change impacts on asphalt road pavement construction and maintenance: An economic life cycle assessment of adaptation measures in the State of Virginia, United States," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 342-355, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4381-:d:363475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.