IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2486-d226637.html
   My bibliography  Save this article

Experimental Research on Heat Transfer and Strength Analysis of Backfill with Ice Grains in Deep Mines

Author

Listed:
  • Xiaoyan Zhang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Yuhang Jia

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Mei Wang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Lang Liu

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

Abstract

In deep mines, two urgent problems are a high temperature thermal environment and solid waste. Filling the goaf with slurry mixed with ice grains is an effective way to solve these two problems simultaneously. The thermal property and mechanical property of the ice-added backfill have a great influence on the cooling effect in the deep mine. In this study, an experimental facility for measuring the temperature distribution of ice-added backfill slurry was established, and the temperature of backfill slurry with different proportions was measured. Then, the thermal properties of temperature distribution and cooling capacity and the mechanical property of uniaxial compressive strength of the backfill specimens were analyzed, and the results indicated the following: firstly, the cooling capacity of ice-added backfill specimens is negatively related with the slurry concentration C and is positively related with the ice-water ratio Ω; secondly, the strength of backfill specimens is affected by the slurry concentration C and ice-water ratio Ω by a contrary law compared to the cooling capacity; thirdly, ice-added backfill slurry with an ice-water ratio Ω of 1:1 has the best mechanical property after solidification. The effects of the slurry concentration and ice-water ratio on the thermal and mechanical properties were analyzed, and the results indicated that the optimum proportion of ice-added backfill slurry is a slurry concentration of 74% and an ice-water ratio of 1:1 in the present research range. This study is significant for the deep mine cooling method with ice-added backfill.

Suggested Citation

  • Xiaoyan Zhang & Yuhang Jia & Mei Wang & Lang Liu, 2019. "Experimental Research on Heat Transfer and Strength Analysis of Backfill with Ice Grains in Deep Mines," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2486-:d:226637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2486/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiangqiang Cheng & Yaben Guo & Chaowei Dong & Jianfei Xu & Wanan Lai & Bin Du, 2021. "Mechanical Properties of Clay Based Cemented Paste Backfill for Coal Recovery from Deep Mines," Energies, MDPI, vol. 14(18), pages 1-14, September.
    2. Maria Vicidomini & Diana D’Agostino, 2022. "Geothermal Source Exploitation for Energy Saving and Environmental Energy Production," Energies, MDPI, vol. 15(17), pages 1-5, September.
    3. Xiaoyan Zhang & Muyan Xu & Li Liu & Lang Liu & Mei Wang & Haiwei Ji & KI-IL Song, 2020. "The Concept, Technical System and Heat Transfer Analysis on Phase-Change Heat Storage Backfill for Exploitation of Geothermal Energy," Energies, MDPI, vol. 13(18), pages 1-22, September.
    4. Xian Li & Houli Fu, 2020. "Development of an Efficient Cooling Strategy in the Heading Face of Underground Mines," Energies, MDPI, vol. 13(5), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2486-:d:226637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.