IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1092-d207302.html
   My bibliography  Save this article

Optimal Coupling of Straw and Synthetic Fertilizers Incorporation on Soil Properties, Active Fe Dynamics, and Greenhouse Gas Emission in Jasminum sambac (L.) Field in Southeastern China

Author

Listed:
  • Chun Wang

    (Institute of Geography, Fujian Normal University, Fuzhou 350007, China)

  • Qingwen Min

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Abbas Ali Abid

    (Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China)

  • Jordi Sardans

    (CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain
    CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain)

  • Honghui Wu

    (Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Derrick Yuk Fo Lai

    (Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China)

  • Josep Peñuelas

    (CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain
    CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain)

  • Weiqi Wang

    (Institute of Geography, Fujian Normal University, Fuzhou 350007, China)

Abstract

In agriculture, synthetic fertilizers have played a key role in enhancing food production and keeping the world’s population adequately fed. China’s participation is essential to global efforts in reducing greenhouse gas (GHG) emissions because it is the largest producer and consumer of synthetic fertilizers. A field experiment was conducted in a Jasminum sambac (L.) field to evaluate the impact different doses of fertilizers (half, standard, and double) and their combination with straw on ecosystem (including crop plants and soil) GHG emissions. The results showed that in comparison with the control or straw treatments, the straw + standard fertilizer treatment increased the soil water content. The fertilizer treatments decreased the soil pH, but the straw and combination treatments, especially the straw + standard fertilizer treatment, had higher soil pH in comparison with the fertilizer treatment. The active soil Fe (Fe 2+ and Fe 3+ ) concentration was slightly increased in the straw + standard fertilizer treatment in comparison with the control. Moreover, fertilizer increased the CO 2 emission, and we detected a positive interaction between the straw application and the double fertilization dose that increased CO 2 emission, but the straw + standard fertilizer treatment decreased it. Fertilizer decreased CH 4 and N 2 O emissions, but when straw and fertilizer treatments were applied together, this increased CH 4 and N 2 O emissions. Overall, considering the soil properties and GHG emissions, the straw + standard fertilizer treatment was the best method to enhance soil water retention capacity, improve soil acid, and mitigate greenhouse gas emissions for sustainable management of J. sambac dry croplands.

Suggested Citation

  • Chun Wang & Qingwen Min & Abbas Ali Abid & Jordi Sardans & Honghui Wu & Derrick Yuk Fo Lai & Josep Peñuelas & Weiqi Wang, 2019. "Optimal Coupling of Straw and Synthetic Fertilizers Incorporation on Soil Properties, Active Fe Dynamics, and Greenhouse Gas Emission in Jasminum sambac (L.) Field in Southeastern China," Sustainability, MDPI, vol. 11(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1092-:d:207302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Ge & Shiyun Zhang & Yan Lu & Jiyu Jiang & Hui Jiang & Xiaona Cheng, 2022. "Can Higher Land Rentals Promote Soil Conservation of Large-Scale Farmers in China?," IJERPH, MDPI, vol. 19(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    3. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    4. Zhu, Wei & Yang, Jingsong & Yao, Rongjiang & Xie, Wenping & Wang, Xiangping & Liu, Yuqian, 2022. "Soil water-salt control and yield improvement under the effect of compound control in saline soil of the Yellow River Delta, China," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    8. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    9. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    10. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    11. Abd El-Mageed, Taia A. & El- Samnoudi, Ibrahim M. & Ibrahim, Abd El-Aty M. & Abd El Tawwab, Ahmed R., 2018. "Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime," Agricultural Water Management, Elsevier, vol. 208(C), pages 431-439.
    12. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    13. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    14. Fu, Wei & Fan, Jun & Hao, Mingde & Hu, Jinsheng & Wang, Huan, 2021. "Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 244(C).
    15. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    16. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    17. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
    18. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    19. Zhang, Xiao-Feng & Luo, Chong-Liang & Ren, Hong-Xu & Mburu, David & Wang, Bao-Zhong & Kavagi, Levis & Wesly, Kiprotich & Nyende, Aggrey Bernard & Xiong, You-Cai, 2021. "Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L.) in semiarid Kenya," Agricultural Water Management, Elsevier, vol. 246(C).
    20. Gerçek, Sinan & Demirkaya, Mustafa, 2021. "Impact of colored water pillows on yield and water productivity of pepper under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1092-:d:207302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.