IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7054-d296110.html
   My bibliography  Save this article

A Secure Data Sharing Platform Using Blockchain and Interplanetary File System

Author

Listed:
  • Muqaddas Naz

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Fahad A. Al-zahrani

    (Computer Engineering Department, Umm AlQura University, Mecca 24381, Saudi Arabia)

  • Rabiya Khalid

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Ali Mustafa Qamar

    (Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
    School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Muhammad Khalil Afzal

    (Department of Computer Science, COMSATS University Islamabad, Wah Cantonment 47040, Pakistan)

  • Muhammad Shafiq

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea)

Abstract

In a research community, data sharing is an essential step to gain maximum knowledge from the prior work. Existing data sharing platforms depend on trusted third party (TTP). Due to the involvement of TTP, such systems lack trust, transparency, security, and immutability. To overcome these issues, this paper proposed a blockchain-based secure data sharing platform by leveraging the benefits of interplanetary file system (IPFS). A meta data is uploaded to IPFS server by owner and then divided into n secret shares. The proposed scheme achieves security and access control by executing the access roles written in smart contract by owner. Users are first authenticated through RSA signatures and then submit the requested amount as a price of digital content. After the successful delivery of data, the user is encouraged to register the reviews about data. These reviews are validated through Watson analyzer to filter out the fake reviews. The customers registering valid reviews are given incentives. In this way, maximum reviews are submitted against every file. In this scenario, decentralized storage, Ethereum blockchain, encryption, and incentive mechanism are combined. To implement the proposed scenario, smart contracts are written in solidity and deployed on local Ethereum test network. The proposed scheme achieves transparency, security, access control, authenticity of owner, and quality of data. In simulation results, an analysis is performed on gas consumption and actual cost required in terms of USD, so that a good price estimate can be done while deploying the implemented scenario in real set-up. Moreover, computational time for different encryption schemes are plotted to represent the performance of implemented scheme, which is shamir secret sharing (SSS). Results show that SSS shows the least computational time as compared to advanced encryption standard (AES) 128 and 256.

Suggested Citation

  • Muqaddas Naz & Fahad A. Al-zahrani & Rabiya Khalid & Nadeem Javaid & Ali Mustafa Qamar & Muhammad Khalil Afzal & Muhammad Shafiq, 2019. "A Secure Data Sharing Platform Using Blockchain and Interplanetary File System," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7054-:d:296110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7054/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishnu Kumar Kaliappan & Seungjin Yu & Rajasoundaran Soundararajan & Sangwoo Jeon & Dugki Min & Eunmi Choi, 2022. "High-Secured Data Communication for Cloud Enabled Secure Docker Image Sharing Technique Using Blockchain-Based Homomorphic Encryption," Energies, MDPI, vol. 15(15), pages 1-16, July.
    2. Manpreet Kaur & Shikha Gupta & Deepak Kumar & Chaman Verma & Bogdan-Constantin Neagu & Maria Simona Raboaca, 2022. "Delegated Proof of Accessibility (DPoAC): A Novel Consensus Protocol for Blockchain Systems," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    3. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    4. Muhammad Umar Javed & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Muhammad Tahir & Muhammad Ramzan, 2020. "Scheduling Charging of Electric Vehicles in a Secured Manner by Emphasizing Cost Minimization Using Blockchain Technology and IPFS," Sustainability, MDPI, vol. 12(12), pages 1-37, June.
    5. Abdulaziz Aldribi & Aman Singh, 2022. "Blockchain Empowered Smart Home: A Scalable Architecture for Sustainable Smart Cities," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    6. Nadine Bachmann & Shailesh Tripathi & Manuel Brunner & Herbert Jodlbauer, 2022. "The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    7. Ayyoob Sharifi & Zaheer Allam & Bakhtiar Feizizadeh & Hessam Ghamari, 2021. "Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends," Sustainability, MDPI, vol. 13(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7054-:d:296110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.