IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6956-d294868.html
   My bibliography  Save this article

Predicting Stormwater Retention Capacity of Green Roofs: An Experimental Study of the Roles of Climate, Substrate Soil Moisture, and Drainage Layer Properties

Author

Listed:
  • Antonia Longobardi

    (Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy)

  • Roberta D’Ambrosio

    (Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy)

  • Mirka Mobilia

    (Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano SA, Italy)

Abstract

Due to the ever-increasing degree of urbanization, blue and green infrastructures are becoming important tools for achieving stormwater management sustainability in urban areas. Concerning green roofs, although scientists have investigated their behaviors under different climates and building practices, their hydrological performance is still a thought-provoking field of research. An event scale analysis based on thirty-five rainfall–runoff events recorded at a new set of experimental green roofs located in Southern Italy has been performed with the aim of identifying the relative roles of climate, substrate moisture conditions, and building practices on retention properties. The retention coefficient showed a wide range of variability, which could not be captured by neither simple nor multiple linear regression analysis, relating the latter to rainfall characteristics and substrate soil water content. Significant improvements in the prediction of the retention coefficient were obtained by a preliminary identification of groups of rainfall–runoff events, based on substrate soil water content thresholds. Within each group, a primary role is played by rainfall. At the experimental site, building practices, particularly those concerning the drainage layer properties, appeared to affect the retention properties only for specific event types.

Suggested Citation

  • Antonia Longobardi & Roberta D’Ambrosio & Mirka Mobilia, 2019. "Predicting Stormwater Retention Capacity of Green Roofs: An Experimental Study of the Roles of Climate, Substrate Soil Moisture, and Drainage Layer Properties," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6956-:d:294868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonja Knapp & Sebastian Schmauck & Andreas Zehnsdorf, 2019. "Biodiversity Impact of Green Roofs and Constructed Wetlands as Progressive Eco-Technologies in Urban Areas," Sustainability, MDPI, vol. 11(20), pages 1-26, October.
    2. Musa Akther & Jianxun He & Angus Chu & Jian Huang & Bert Van Duin, 2018. "A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones," Sustainability, MDPI, vol. 10(8), pages 1-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franco Salerno & Lucia Valsecchi & Riccardo Minoia & Diego Copetti & Gianni Tartari & Nicolas Guyennon & Nicola Colombo & Niccolò Pirola & Benedetta Barozzi & Alice Bellazzi & Laura Marziali, 2021. "Factors Controlling the Hydraulic Efficiency of Green Roofs in the Metropolitan Area of Milan (Italy)," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    2. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    3. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    4. Agnieszka Bus & Anna Szelągowska, 2021. "Green Water from Green Roofs—The Ecological and Economic Effects," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    5. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hana Brunhoferova & Silvia Venditti & Cédric C. Laczny & Laura Lebrun & Joachim Hansen, 2022. "Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    2. Yanqin Zhang & Xianli You & Shanjun Huang & Minhua Wang & Jianwen Dong, 2022. "Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    3. Ignacio Andrés-Doménech & Sara Perales-Momparler & Adrián Morales-Torres & Ignacio Escuder-Bueno, 2018. "Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions," Sustainability, MDPI, vol. 10(9), pages 1-15, August.
    4. Ingo Kowarik & Leonie K. Fischer & Dave Kendal, 2020. "Biodiversity Conservation and Sustainable Urban Development," Sustainability, MDPI, vol. 12(12), pages 1-8, June.
    5. Fernando Barriuso & Beatriz Urbano, 2020. "Analysis of the Realities, Evolution and Prospects of Urban Greening from an International Point of View," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(53), pages 137-137, February.
    6. Elena Giacomello & Jacopo Gaspari, 2021. "Hydrologic Performance of an Extensive Green Roof under Intense Rain Events: Results from a Rain-Chamber Simulation," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    7. Fernando Barriuso & Beatriz Urbano, 2021. "Green Roofs and Walls Design Intended to Mitigate Climate Change in Urban Areas across All Continents," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    8. Hsin Rau & Mary Deanne M. Lagapa & Po-Hsun Chen, 2021. "Anticipatory Non-Green-Phenomena Determination for Designing Eco-Design Products," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    9. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    10. Sri Yuliani & Gagoek Hardiman & Erni Setyowati, 2020. "Green-Roof: The Role of Community in the Substitution of Green-Space toward Sustainable Development," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    11. Mariusz Starzec & Józef Dziopak, 2020. "A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System," Resources, MDPI, vol. 9(9), pages 1-19, September.
    12. Bartosz Szeląg & Agnieszka Cienciała & Szymon Sobura & Jan Studziński & Juan T. García, 2019. "Urbanization and Management of the Catchment Retention in the Aspect of Operation of Storm Overflow: A Probabilistic Approach," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    13. Kinga Kimic & Karina Ostrysz, 2021. "Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects," Sustainability, MDPI, vol. 13(19), pages 1-31, October.
    14. Rocío Pineda-Martos & Cristina S. C. Calheiros, 2021. "Nature-Based Solutions in Cities—Contribution of the Portuguese National Association of Green Roofs to Urban Circularity," Circular Economy and Sustainability, Springer, vol. 1(3), pages 1019-1035, November.
    15. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).
    16. Mungur, Maheshsingh & Poorun, Yashna & Juggurnath, Diksha & Ruhomally, Yusra Bibi & Rughooputh, Reshma & Dauhoo, Muhammad Zaid & Khoodaruth, Abdel & Shamachurn, Heman & Gooroochurn, Mahendra & Boodia,, 2020. "A numerical and experimental investigation of the effectiveness of green roofs in tropical environments: The case study of Mauritius in mid and late winter," Energy, Elsevier, vol. 202(C).
    17. Agnieszka Karczmarczyk & Anna Baryła & Daniel Szejba & Barbara Miechowicz & Radosław Amroziński & Marcin Ciuraj, 2023. "Quantitative, Qualitative and Thermal Aspects of Rainwater Retention on Wetland Roofs," Sustainability, MDPI, vol. 15(22), pages 1-14, November.
    18. Flora Silva & Cristina Sousa Coutinho Calheiros & Guilherme Valle & Pedro Pinto & António Albuquerque & Ana Maria Antão-Geraldes, 2023. "Influence of Green Roofs on the Design of a Public Stormwater Drainage System: A Case Study," Sustainability, MDPI, vol. 15(7), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6956-:d:294868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.