IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6716-d291366.html
   My bibliography  Save this article

Modeling and Prediction of the Uniformity of Spray Liquid Coverage from Flat Fan Spray Nozzles

Author

Listed:
  • Paweł A. Kluza

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, 20-612 Lublin, Poland)

  • Izabela Kuna-Broniowska

    (Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, 20-612 Lublin, Poland)

  • Stanisław Parafiniuk

    (Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, 20-612 Lublin, Poland)

Abstract

The effectiveness and quality of agricultural spraying largely depends on the technical efficiency of the nozzles installed in agricultural sprayers. The uniform spraying of plants results in a decrease in the amount of pesticides used in agricultural production and affects environmental safety. Both newly developed sprayers and those currently in use need quality control as well as an assessment of the performance of the spraying process, especially its uniformity. However, the models applied presently do not ensure accurate estimates or predictions of the spray liquid coverage uniformity of the treated surface. Generally, the distribution of the atomized liquid quantity is symmetrical and leptokurtic, which means that it does not fit well to the commonly used standard distribution. Therefore, there is a need to develop and design new tools for the evaluation, modeling, and prediction of such a process. The research problem studied in the present work was to find a new model for the distribution of atomized liquid quantity that could provide capabilities better than have been available so far to assess and predict the spraying process results. The research problem was solved through the formulation of a new function for the probability density distribution of sprayed liquid accumulation on the surface of the preset dimension size. The development of the new model was based on the results from a series of water atomization tests with an appropriate measurement device design based on the widely applied flat fan nozzles (AZ-MM type).

Suggested Citation

  • Paweł A. Kluza & Izabela Kuna-Broniowska & Stanisław Parafiniuk, 2019. "Modeling and Prediction of the Uniformity of Spray Liquid Coverage from Flat Fan Spray Nozzles," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6716-:d:291366
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6716/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Wawrzosek & Stanisław Parafiniuk, 2021. "Optimization of the Opening Shape in Slot Spray Nozzles in a Field Boom Sprayer," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    2. Tadas Jomantas & Kristina Lekavičienė & Dainius Steponavičius & Albinas Andriušis & Ernestas Zaleckas & Remigijus Zinkevičius & Catalin Viorel Popescu & Calin Salceanu & Jonas Ignatavičius & Aurelija , 2023. "The Influence of Newly Developed Spray Drift Reduction Agents on Drift Mitigation by Means of Wind Tunnel and Field Evaluation Methods," Agriculture, MDPI, vol. 13(2), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6716-:d:291366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.