IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6470-d287959.html
   My bibliography  Save this article

Occurrence Characteristic and Mining Technology of Ultra-thick Coal Seam in Xinjiang, China

Author

Listed:
  • Dongdong Qin

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Xufeng Wang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    Jiangsu Engineering Laboratory of Mine Earthquake Monitoring and Prevention, China University of Mining & Technology, Xuzhou 221116, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China)

  • Dongsheng Zhang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China)

  • Weiming Guan

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China)

  • Lei Zhang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Mengtang Xu

    (School of Mines, Guizhou Institute of Technology, Guiyang 550003, China)

Abstract

The scientific and efficient mining of ultra-thick coal seam in Xinjiang, China is faced with the problems of low exploration level and lack of theoretical research on underground mining. This paper studied occurrence characteristic of ultra-thick coal seams in Xinjiang, using field investigation and drilling exploration. Based on the variation law of support load under different roof bearing structure form and development height in multi-layer mining, classification method and mining technology selection of ultra-thick coal seam were put forward. The results indicate that: (1) The ultra-thick coal seams in Xinjiang have a distribution characteristic of more north and less south, more east and less west, mainly concentrate in East Junggar and Turpan-Harmi coalfields. The form of the ultra-thick coal seam has the remarkable characteristic of coal seams merging and bifurcating. (2) The mechanical model of the relationship between the support and surrounding rock under different roof bearing structures is established. At the early stage of multi-layer mining, the support load includes the load caused by rotary subsidence of the blocks that formed the near-stope roof bearing structure and the gravity load of rock blocks under roof bearing structure. At the later stage, the support load is mainly gravity load of loose blocks below the far-stope roof bearing structure. (3) According the roof bearing structure form, ultra-thick coal seam can be divided into three types: no stable bearing structure, (higher) beam bearing structure and arch bearing structure. In order to ensure the stability of near-stope roof bearing structure, backfill mining, longwall mining, and longwall mining early and backfill mining later should be adopted in three types ultra-thick coal seams mining respectively.

Suggested Citation

  • Dongdong Qin & Xufeng Wang & Dongsheng Zhang & Weiming Guan & Lei Zhang & Mengtang Xu, 2019. "Occurrence Characteristic and Mining Technology of Ultra-thick Coal Seam in Xinjiang, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6470-:d:287959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xufeng Wang & Dongdong Qin & Dongsheng Zhang & Weiming Guan & Mengtang Xu & Xuanlin Wang & Chengguo Zhang, 2019. "Evolution Characteristics of Overburden Strata Structure for Ultra-Thick Coal Seam Multi-Layer Mining in Xinjiang East Junggar Basin," Energies, MDPI, vol. 12(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guojun Zhang & Quansheng Li & Zhuhe Xu & Yong Zhang, 2022. "Roof Fractures of Near-Vertical and Extremely Thick Coal Seams in Horizontally Grouped Top-Coal Drawing Method Based on the Theory of a Thin Plate," Sustainability, MDPI, vol. 14(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihong Liu & Hongbao Zhao & Shaoqiang Liu & Wenhao Sun, 2022. "Asymmetric damage mechanism of floor roadway based on zonal damage characteristics of longwall panel floor: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1015-1041, October.
    2. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Lin, Haifei & Shu, Chi-Min & Shuang, Haiqing & Wei, Zongyong, 2023. "Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining: A review of methods, influencing factors, and techniques," Energy, Elsevier, vol. 284(C).
    3. Laifu Zhao & Qian Du & Jianmin Gao & Shaohua Wu, 2019. "Contribution of Minerals in Different Occurrence Forms to PM 10 Emissions during the Combustion of Pulverized Zhundong Coal," Energies, MDPI, vol. 12(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6470-:d:287959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.