IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6085-d282544.html
   My bibliography  Save this article

Carbon Benchmark for Czech Residential Buildings Based on Climate Goals Set by the Paris Agreement for 2030

Author

Listed:
  • David Pálenský

    (Faculty of Civil Engineering, Czech Technical University, 166 29 Prague, Czech Republic)

  • Antonín Lupíšek

    (Faculty of Civil Engineering, Czech Technical University, 166 29 Prague, Czech Republic
    University Centre for Energy Efficient Buildings, Czech Technical University, 273 43 Buštěhrad, Czech Republic)

Abstract

This paper deals with the problem that actual building regulations do not reflect the climate targets set by the Paris Agreement. To address this, a benchmark was developed for greenhouse gas (GHG) emissions of buildings on the basis of the Emissions Gap Report. We first applied an equal allocation of the GHG emission limit for 2030 among the forecasted population to calculate a virtual personal GHG emission limit. We took a proportion of this personal limit for the purpose of housing and extrapolated it for the whole building based on the number of occupants. We also undertook a case study of an actual multifamily residential building and compared its standard design to the benchmark using a simplified life cycle assessment (LCA) method in line with the national SBToolCZ method. The results showed that the assessed residential house exceeded the emission requirement by a factor of 2.5. Based on the assessment, six sets of saving measures were proposed to reduce the operational and embodied GHG emissions. The saving measures included change in temperature zoning, improvement of the U-values of the building envelope, exchange of construction materials for reduced embodied GHG emissions, exchange of heat source for biomass boiler, introduction of light-emitting diode (LED) lighting, use of mechanical ventilation with heat recovery, addition of vacuum solar collectors, and the addition of photovoltaic (PV) panels. Finally, the variants were compared and their suitability in the Czech conditions was examined.

Suggested Citation

  • David Pálenský & Antonín Lupíšek, 2019. "Carbon Benchmark for Czech Residential Buildings Based on Climate Goals Set by the Paris Agreement for 2030," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6085-:d:282544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niklas H�hne & Michel den Elzen & Donovan Escalante, 2014. "Regional GHG reduction targets based on effort sharing: a comparison of studies," Climate Policy, Taylor & Francis Journals, vol. 14(1), pages 122-147, January.
    2. Karl W. Steininger & Christian Lininger & Lukas H. Meyer & Pablo Muñoz & Thomas Schinko, 2016. "Multiple carbon accounting to support just and effective climate policies," Nature Climate Change, Nature, vol. 6(1), pages 35-41, January.
    3. Bastianoni, Simone & Pulselli, Federico Maria & Tiezzi, Enzo, 2004. "The problem of assigning responsibility for greenhouse gas emissions," Ecological Economics, Elsevier, vol. 49(3), pages 253-257, July.
    4. Koo, Choongwan & Hong, Taehoon & Kim, Jimin & Kim, Hyunjoong, 2015. "An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 410-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karl Steininger & Pablo Munoz & Jonas Karstensen & Glen Peters & Rita Strohmaier & Erick Velazquez, 2017. "Austria’s Consumption-Based Greenhouse Gas Emissions: Identifying sectoral sources and destinations," EcoMod2017 10472, EcoMod.
    2. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    3. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    4. Harmke Immink & Robbie Louw & Amy Garlick & Samuel Vosper & Alan Brent, 2022. "Country specific low carbon commitments versus equitable and practical company specific decarbonisation targets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10005-10025, August.
    5. Levitt, Clinton J. & Pedersen, Morten S. & Sørensen, Anders, 2015. "Examining the efforts of a small, open economy to reduce carbon emissions: The case of Denmark," Ecological Economics, Elsevier, vol. 119(C), pages 94-106.
    6. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    7. Airebule, Palizha & Cheng, Haitao & Ishikawa, Jota, 2023. "Assessing carbon emissions embodied in international trade based on shared responsibility," Journal of the Japanese and International Economies, Elsevier, vol. 68(C).
    8. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Barbara Schlomann & Wolfgang Eichhammer, 2014. "Interaction between Climate, Emissions Trading and Energy Efficiency Targets," Energy & Environment, , vol. 25(3-4), pages 709-731, April.
    10. Tian Luan, 2024. "A Review of Corporate Social Responsibility Decoupling and Its Impact: Evidence from China," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
    11. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.
    12. Ivanova, Diana & Wieland, Hanspeter, 2023. "Tracing carbon footprints to intermediate industries in the United Kingdom," Ecological Economics, Elsevier, vol. 214(C).
    13. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    14. Frank Hartmann & Paolo Perego & Anna Young, 2013. "Carbon Accounting: Challenges for Research in Management Control and Performance Measurement," Abacus, Accounting Foundation, University of Sydney, vol. 49(4), pages 539-563, December.
    15. repec:grz:wpaper:2013-03 is not listed on IDEAS
    16. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    17. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    18. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    19. Zengkai Zhang & Jiaoyan Li & Dabo Guan, 2023. "Value chain carbon footprints of Chinese listed companies," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    21. Saah, David & Patterson, Trista & Buchholz, Thomas & Ganz, David & Albert, David & Rush, Keith, 2014. "Modeling economic and carbon consequences of a shift to wood-based energy in a rural ‘cluster’; a network analysis in southeast Alaska," Ecological Economics, Elsevier, vol. 107(C), pages 287-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6085-:d:282544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.