IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5678-d276447.html
   My bibliography  Save this article

Parametric Modeling for Form-Based Planning in Dense Urban Environments

Author

Listed:
  • Yingyi Zhang

    (School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Chang Liu

    (Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

Abstract

Parametric instruments are employed broadly across the building industry. The study of applying parametric techniques to sustainable form-based planning, however, remains insufficient. This paper therefore critically assesses parametric techniques for facilitating form-based planning in an urban environment. The analysis is to twofold: Can a parametric technique truly enhance the form-based planning process more effectively than existing planning processes? and By what means can form-based planning layouts derived from parametric techniques be appraised? Methodologies include a case study in Hong Kong, quantitative and qualitative analysis, and experimental modeling on parametric platforms. Results indicate that the urban forms can be visualized in real-time during planning processes with a parametric coding system. Existing planning processes do not benefit from real-time visualization, but these alone do not necessarily result in more rational planning layouts. Parametric techniques produce visual models effectively but are not a planning panacea. Findings include a criticism of parametric techniques and pertinent instruments in urban projects, as well as valuable insights for the study of complex form-based planning in dense urban socio-environments.

Suggested Citation

  • Yingyi Zhang & Chang Liu, 2019. "Parametric Modeling for Form-Based Planning in Dense Urban Environments," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5678-:d:276447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5678/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyi Zhang, 2022. "Evaluating Parametric Form-Based Code for Sustainable Development of Urban Communities and Neighborhoods," IJERPH, MDPI, vol. 19(12), pages 1-15, June.
    2. Yingyi Zhang, 2022. "Access to Healthcare Facilities and Women’s Healthcare Requirements in Urban Areas: A Case Study of Beijing," IJERPH, MDPI, vol. 19(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5678-:d:276447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.