IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5635-d275913.html
   My bibliography  Save this article

Comprehensive Evaluation of the Sustainable Development of Battery Electric Vehicles in China

Author

Listed:
  • Yijiao Wang

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

  • Guoguang Zhou

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

  • Ting Li

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

  • Xiao Wei

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

Abstract

Due to the rapid growth in the total number of vehicles in China, energy consumption and environmental pollution are serious problems. The development of electric vehicles (EVs) has become one of the important measures for solving these problems. As EVs are in a period of rapid development, sustainability research on them is conducive to the timely discovery of—and solution to—problems in the development process, but current research on the sustainability of EVs is still scarce. Based on the strategic development direction of EVs in China, battery electric vehicles (BEVs) were chosen as the research object of this study. The theory and method of the life cycle sustainability assessment (LCSA) were used to study the sustainability of BEVs. Specifically, the indicators of the life cycle assessment (LCA) were constructed, and the GaBi software was used to assess the environmental dimensions. The framework of life cycle costing (LCC) was used to assess the economic dimensions from the perspective of consumers. The indicators of the social life cycle assessment (SLCA) of stakeholders were constructed to assess the social dimension. Then, the method of the technique for order preference by similarity to ideal solution (TOPSIS) was selected for multicriteria decision-making in order to integrate the three dimensions. A specific conclusion was drawn from a comparison of BEVs and internal combustion engine vehicles (ICEVs). The study found that the life cycle sustainability of ICEVs in China was better than that of BEVs. This result might be unexpected, but there were reasons for it. Through sensitivity analysis, it was concluded that the current power structure and energy consumption in the operation phase of BEVs had a higher environmental impact, and the high cost of batteries and the government subsidy policy had a higher impact on the cost of BEVs. Corresponding suggestions are put forward at the end of the article.

Suggested Citation

  • Yijiao Wang & Guoguang Zhou & Ting Li & Xiao Wei, 2019. "Comprehensive Evaluation of the Sustainable Development of Battery Electric Vehicles in China," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5635-:d:275913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Chengtao & Wu, Tian & Ou, Xunmin & Zhang, Qian & Zhang, Xu & Zhang, Xiliang, 2013. "Life-cycle private costs of hybrid electric vehicles in the current Chinese market," Energy Policy, Elsevier, vol. 55(C), pages 501-510.
    2. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    3. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
    4. Ruqun Wu & Dan Yang & Jiquan Chen, 2014. "Social Life Cycle Assessment Revisited," Sustainability, MDPI, vol. 6(7), pages 1-27, July.
    5. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    6. Man Yu & Anthony Halog, 2015. "Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study," Sustainability, MDPI, vol. 7(2), pages 1-35, January.
    7. Han Hao & Michael Wang & Yan Zhou & Hewu Wang & Minggao Ouyang, 2015. "Levelized costs of conventional and battery electric vehicles in china: Beijing experiences," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1229-1246, October.
    8. Wu, Xing & Dong, Jing & Lin, Zhenhong, 2014. "Cost analysis of plug-in hybrid electric vehicles using GPS-based longitudinal travel data," Energy Policy, Elsevier, vol. 68(C), pages 206-217.
    9. Kurka, Thomas, 2013. "Application of the analytic hierarchy process to evaluate the regional sustainability of bioenergy developments," Energy, Elsevier, vol. 62(C), pages 393-402.
    10. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    11. Liu, Zongwei & Hao, Han & Cheng, Xiang & Zhao, Fuquan, 2018. "Critical issues of energy efficient and new energy vehicles development in China," Energy Policy, Elsevier, vol. 115(C), pages 92-97.
    12. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aser Alaa Ahmed & Mohammad A. Nazzal & Basil M. Darras & Ibrahim M. Deiab, 2022. "A Comprehensive Sustainability Assessment of Battery Electric Vehicles, Fuel Cell Electric Vehicles, and Internal Combustion Engine Vehicles through a Comparative Circular Economy Assessment Approach," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    2. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    3. José Giménez & Antonia Madrid-Guijarro & Antonio Duréndez, 2019. "Competitive Capabilities for the Innovation and Performance of Spanish Construction Companies," Sustainability, MDPI, vol. 11(19), pages 1-24, October.
    4. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    5. Hassan Hashemi & Parviz Ghoddousi & Farnad Nasirzadeh, 2021. "Sustainability Indicator Selection by a Novel Triangular Intuitionistic Fuzzy Decision-Making Approach in Highway Construction Projects," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    6. T.E.T Dantas & S.R Soares, 2022. "Systematic literature review on the application of life cycle sustainability assessment in the energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1583-1615, February.
    7. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    8. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    2. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    3. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    4. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    5. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    6. Wang, Ning & Tang, Linhao & Zhang, Wenjian & Guo, Jiahui, 2019. "How to face the challenges caused by the abolishment of subsidies for electric vehicles in China?," Energy, Elsevier, vol. 166(C), pages 359-372.
    7. Jianlong Wu & Zhongji Yang & Xiaobo Hu & Hongqi Wang & Jing Huang, 2018. "Exploring Driving Forces of Sustainable Development of China’s New Energy Vehicle Industry: An Analysis from the Perspective of an Innovation Ecosystem," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    8. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    9. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    10. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    11. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    12. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    13. Jaržemskis Andrius & Jaržemskienė Ilona, 2022. "European Green Deal Implications on Country Level Energy Consumption," Folia Oeconomica Stetinensia, Sciendo, vol. 22(2), pages 97-122, December.
    14. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    15. Peng Yu & Jian Zhang & Defang Yang & Xin Lin & Tianying Xu, 2019. "The Evolution of China’s New Energy Vehicle Industry from the Perspective of a Technology–Market–Policy Framework," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    16. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Dissecting the total cost of ownership of fully electric cars in Italy: The impact of annual distance travelled, home charging and urban driving," Research in Transportation Economics, Elsevier, vol. 80(C).
    17. Wu, Zezhou & He, Qiufeng & Li, Jiarun & Bi, Guoqiang & Antwi-Afari, Maxwell Fordjour, 2023. "Public attitudes and sentiments towards new energy vehicles in China: A text mining approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    19. Makena Coffman & Scott Allen & Sherilyn Wee, 2018. "Who are Driving Electric Vehicles? An analysis of factors that affect EV adoption in Hawaii," Working Papers 2018-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    20. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5635-:d:275913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.