IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5355-d271550.html
   My bibliography  Save this article

IoT Power Monitoring System for Smart Environments

Author

Listed:
  • Diogo Santos

    (ISTAR-IUL, Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa, Portugal)

  • João C. Ferreira

    (ISTAR-IUL, Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa, Portugal
    INOV INESC Inovação—Instituto de Novas Tecnologias, 1000-029 Lisboa, Portugal)

Abstract

In this research work, we describe the development and subsequent validation of EnerMon a flexible, efficient, edge-computing based Internet of Things (IoT) LoRa (LongRange) System to monitor power consumption. This system provides real-time information and a descriptive analytics process to provide a ‘big picture’ about energy consumption over time and identify energetic waste. The solution is based on Arduinos, current transformer sensors, Raspberry Pi as an application server and LoRa communication alongside a description and information on what is to be expected of it, describing the development process from the design phase to the validation phase with all steps in between. Due to LoRa low debit communication, an edge computing approach was implemented to create a real-time monitoring process based on this technology. This solution, with the help of descriptive analysis, allows the creation of an energetic local footprint, using a low-cost developed solution for less than 80€ per three-phases monitoring device. This solution also allows for easy installation without communication range and obstacles limitations making it easy use in different situations from big complex building to smaller consumers, such as electric boilers, or simply to measure the energetic footprint of tourists in a small local tourist apartment.

Suggested Citation

  • Diogo Santos & João C. Ferreira, 2019. "IoT Power Monitoring System for Smart Environments," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5355-:d:271550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5355/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Mataloto & Daniel Calé & Kaiser Carimo & Joao C. Ferreira & Ricardo Resende, 2021. "3D IoT System for Environmental and Energy Consumption Monitoring System," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Jae Hong Park & Phil Goo Kang & Eunseok Kim & Tae Woo Kim & Gahee Kim & Heejeong Seok & Jinwon Seo, 2021. "Introduction of IoT-Based Surrogate Parameters in the Ex-Post Countermeasure of Industrial Sectors in Integrated Permit Policy," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    3. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
    4. Susie Ruqun WU & Gabriela Shirkey & Ilke Celik & Changliang Shao & Jiquan Chen, 2022. "A Review on the Adoption of AI, BC, and IoT in Sustainability Research," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    5. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    6. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5355-:d:271550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.