IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5093-d268151.html
   My bibliography  Save this article

Benefits of Ryegrass on Multicontaminated Soils Part 1: Effects of Fertilizers on Bioavailability and Accumulation of Metals

Author

Listed:
  • Christophe Waterlot

    (Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, Institut Supérieur d’Agriculture, 48 Boulevard Vauban, 59046 Lille CEDEX, France
    Equipe Biotechnologie et Gestion des Agents Pathogènes en agriculture (BIOGAP), Yncréa Hauts-de-France, Institut Supérieur d’Agriculture, 48 Boulevard Vauban, 59046 Lille CEDEX, France)

  • Marie Hechelski

    (Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncréa Hauts-de-France, Institut Supérieur d’Agriculture, 48 Boulevard Vauban, 59046 Lille CEDEX, France)

Abstract

Effects of three phosphorus fertilizers on the shoot biomass and on the accumulation of alkali, alkaline earth, and transition metals in the shoots and roots of ryegrass were studied with two contaminated garden soils. Phosphates were added in sustainable quantities in order to reduce the environmental availability of carcinogenic metals (e.g., Cd and Pb) and to enhance the bioavailability of alkali and alkaline earth metals as well as micronutrients needed by plants. Addition of Ca(H 2 PO 4 ) 2 was the most convenient way to (i) limit the concentration of Cd and Pb, (ii) keep constant the transfer of macro- and micronutrient from the soil to the ryegrass shoots, (iii) decrease the availability of metals, and (iv) increase the ratio values between potential Lewis acids and Cd or Pb in order to produce biosourced catalysis. For instance, the real phytoavailability was reduced by 27%–57% and 64.2%–94.8% for Cd and Pb, respectively. Interestingly, the real phytoavailability of Zn was the highest in the least contaminated soils. Even if soils were highly contaminated, no visual toxicity symptoms were recorded in the growing ryegrasses. This indicates that ryegrass is suitable for the revegetation of contaminated gardens. To promote the sustainable ryegrass production on contaminated soils for production of new organic fragrance and drugs in green processes according to REACH (Registration, Evaluation, Authorisation, and Restriction of Chemicals) regulation, two processes should be recommended: assisted phytostabilization of the elements, and then assisted phytoextraction by using chelators.

Suggested Citation

  • Christophe Waterlot & Marie Hechelski, 2019. "Benefits of Ryegrass on Multicontaminated Soils Part 1: Effects of Fertilizers on Bioavailability and Accumulation of Metals," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5093-:d:268151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5093/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slaveya Petrova & Bogdan Nikolov & Iliana Velcheva & Nikola Angelov & Ekaterina Valcheva & Aneliya Katova & Irena Golubinova & Plamen Marinov-Serafimov, 2022. "Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management," Land, MDPI, vol. 11(3), pages 1-23, February.
    2. Théo Guérin & Alina Ghinet & Christophe Waterlot, 2020. "Toward a New Way for the Valorization of Miscanthus Biomass Produced on Metal-Contaminated Soils Part 2: Miscanthus-Based Biosourced Catalyst: Design, Preparation, and Catalytic Efficiency in the Synt," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    3. Yao Kohou Donatien Guéablé & Youssef Bezrhoud & Henri Joël Aké Aké & Haitam Moulay & Amal An-nori & Aziz Soulaimani & Lhoussaine Moughli & Yedir Ouhdouch & Mohamed Hafidi & Mohamed El Gharous & Khalil, 2022. "New Approach for Mining Site Reclamation Using Alternative Substrate Based on Phosphate Industry By-Product and Sludge (Part 2): Metals Transfer to Plant and Soil Microbial Density," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    4. Christophe Waterlot & Pierrick Dufrénoy & Marie Hechelski & Brice Louvel & Adam Daïch & Alina Ghinet, 2019. "Benefits of Ryegrass on Multicontaminated Soils Part 2: A Green Process to Provide Idrocilamide," Sustainability, MDPI, vol. 11(23), pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5093-:d:268151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.