IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5091-d268107.html
   My bibliography  Save this article

A Comprehensive Thermal Comfort Analysis of the Cooling Effect of the Stand Fan Using Questionnaires and a Thermal Manikin

Author

Listed:
  • Sun-Hye Mun

    (Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea
    Contributed equally to this work.)

  • Younghoon Kwak

    (Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea
    Contributed equally to this work.)

  • Yeonjung Kim

    (Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea)

  • Jung-Ho Huh

    (Department of Architectural Engineering, University of Seoul, Seoul 02504, Korea)

Abstract

In this study a quantitative analysis was performed on the effect on thermal comfort of the stand fan, a personal cooling device that creates local air currents. A total of 20 environmental conditions (indoor temperatures: 22, 24, 26, 28, and 30 °C; fan modes: off, low (L) mode, medium (M) mode, and high (H) mode) were analyzed using questionnaires on male and female subjects in their 20s and a thermal manikin test. The contents of the questionnaire consisted of items on thermal sensation, thermal comfort, thermal acceptability, and demands on changes to the air velocity. This step was accompanied by the thermal manikin test to analyze the convective heat transfer coefficient and cooling effect quantitatively by replicating the stand fan. Given that this study provides data on the cooling effect of the stand fan in quantitative values, it allows for a comparison of energy use with other cooling systems such as the air conditioner, and may be used as a primary data set for analysis of energy conservation rates.

Suggested Citation

  • Sun-Hye Mun & Younghoon Kwak & Yeonjung Kim & Jung-Ho Huh, 2019. "A Comprehensive Thermal Comfort Analysis of the Cooling Effect of the Stand Fan Using Questionnaires and a Thermal Manikin," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5091-:d:268107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5091/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5091/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haifang Tang & Junyou Liu & Bohong Zheng, 2022. "Study on the Green Space Patterns and Microclimate Simulation in Typical Urban Blocks in Central China," Sustainability, MDPI, vol. 14(22), pages 1-39, November.
    2. Mi-Su Shin & Ji-Su Choi & Kyu-Nam Rhee, 2020. "Cooling Capacity and Energy Performance of Open-Type Ceiling Radiant Cooling Panel System with Air Circulators," Energies, MDPI, vol. 14(1), pages 1-15, December.
    3. Marek Borowski & Rafał Łuczak & Joanna Halibart & Klaudia Zwolińska & Michał Karch, 2021. "Airflow Fluctuation from Linear Diffusers in an Office Building: The Thermal Comfort Analysis," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5091-:d:268107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.