IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5030-d267228.html
   My bibliography  Save this article

Government Regulations on Closed-Loop Supply Chain with Evolutionarily Stable Strategy

Author

Listed:
  • Ziang Liu

    (Division of Mathematical Science for Social Systems, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka City 560-8531, Japan)

  • Tatsushi Nishi

    (Division of Mathematical Science for Social Systems, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka City 560-8531, Japan)

Abstract

The government plays a critical role in the promotion of recycling strategy among supply chain members. The purpose of this study is to investigate the optimal government policies on closed-loop supply chains and how these policies impact the market demand and the returning strategies of manufacturers and retailers. This paper presents a design of closed-loop supply chains under government regulation by considering a novel three-stage game theoretic model. Firstly, Stackelberg models are adopted to describe the one-shot game between the manufacturer and the retailer in a local market. Secondly, based on the Stackelberg equilibriums, a repeated and dynamic population game is developed. Thirdly, the government analyzes the population game to find the optimal tax and subsidy policies in the whole market. To solve the proposed model, the idea of backward induction is adopted. The results suggest that, by collecting tax and allocating subsidy, the government can influence the market demands and return rates. The centralized supply chain structure is always preferred for the government and the market. The government prefers to allocate subsidy to low-pollution, low-profit remanufactured products. The environmental attention of the government affects the subsidy policy.

Suggested Citation

  • Ziang Liu & Tatsushi Nishi, 2019. "Government Regulations on Closed-Loop Supply Chain with Evolutionarily Stable Strategy," Sustainability, MDPI, vol. 11(18), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5030-:d:267228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Wei-min & Zhao, Zhang & Ke, Hua, 2013. "Dual-channel closed-loop supply chain with government consumption-subsidy," European Journal of Operational Research, Elsevier, vol. 226(2), pages 221-227.
    2. Sisi Yin & Tatsushi Nishi, 2014. "A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(11), pages 2354-2365, November.
    3. Yangke Ding & Lei Ma & Ye Zhang & Dingzhong Feng, 2018. "Analysis of Evolution Mechanism and Optimal Reward-Penalty Mechanism for Collection Strategies in Reverse Supply Chains: The Case of Waste Mobile Phones in China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    4. Bester, Helmut & Guth, Werner, 1998. "Is altruism evolutionarily stable?," Journal of Economic Behavior & Organization, Elsevier, vol. 34(2), pages 193-209, February.
    5. Sudheer Gupta & Richard Loulou, 1998. "Process Innovation, Product Differentiation, and Channel Structure: Strategic Incentives in a Duopoly," Marketing Science, INFORMS, vol. 17(4), pages 301-316.
    6. Maryam Esmaeili & Ghazaleh Allameh & Taraneh Tajvidi, 2016. "Using game theory for analysing pricing models in closed-loop supply chain from short- and long-term perspectives," International Journal of Production Research, Taylor & Francis Journals, vol. 54(7), pages 2152-2169, April.
    7. S. Saha & S.P. Sarmah & Ilkyeong Moon, 2016. "Dual channel closed-loop supply chain coordination with a reward-driven remanufacturing policy," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1503-1517, March.
    8. Gilbert, Stephen M. & Cvsa, Viswanath, 2003. "Strategic commitment to price to stimulate downstream innovation in a supply chain," European Journal of Operational Research, Elsevier, vol. 150(3), pages 617-639, November.
    9. Ji, Ping & Ma, Xin & Li, Gang, 2015. "Developing green purchasing relationships for the manufacturing industry: An evolutionary game theory perspective," International Journal of Production Economics, Elsevier, vol. 166(C), pages 155-162.
    10. Qiang, Qiang & Ke, Ke & Anderson, Trisha & Dong, June, 2013. "The closed-loop supply chain network with competition, distribution channel investment, and uncertainties," Omega, Elsevier, vol. 41(2), pages 186-194.
    11. Jian Li & Weihao Du & Fengmei Yang & Guowei Hua, 2014. "Evolutionary Game Analysis of Remanufacturing Closed-Loop Supply Chain with Asymmetric Information," Sustainability, MDPI, vol. 6(9), pages 1-13, September.
    12. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, April.
    13. He, Peng & He, Yong & Xu, Henry, 2019. "Channel structure and pricing in a dual-channel closed-loop supply chain with government subsidy," International Journal of Production Economics, Elsevier, vol. 213(C), pages 108-123.
    14. Genc, Talat S. & Giovanni, Pietro De, 2017. "Trade-in and save: A two-period closed-loop supply chain game with price and technology dependent returns," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 514-527.
    15. Kangzhou Wang & Yingxue Zhao & Yonghong Cheng & Tsan-Ming Choi, 2014. "Cooperation or Competition? Channel Choice for a Remanufacturing Fashion Supply Chain with Government Subsidy," Sustainability, MDPI, vol. 6(10), pages 1-19, October.
    16. repec:hhs:iuiwop:487 is not listed on IDEAS
    17. Reva,Anna, 2015. "Toward a more business friendly tax regime : key challenges in South Asia," Policy Research Working Paper Series 7513, The World Bank.
    18. R. Canan Savaskan & Luk N. Van Wassenhove, 2006. "Reverse Channel Design: The Case of Competing Retailers," Management Science, INFORMS, vol. 52(1), pages 1-14, January.
    19. Huang, Min & Song, Min & Lee, Loo Hay & Ching, Wai Ki, 2013. "Analysis for strategy of closed-loop supply chain with dual recycling channel," International Journal of Production Economics, Elsevier, vol. 144(2), pages 510-520.
    20. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    21. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    22. Yi, Yuyin & Yang, Haishen, 2017. "Wholesale pricing and evolutionary stable strategies of retailers under network externality," European Journal of Operational Research, Elsevier, vol. 259(1), pages 37-47.
    23. Xiao, Tiaojun & Yu, Gang, 2006. "Supply chain disruption management and evolutionarily stable strategies of retailers in the quantity-setting duopoly situation with homogeneous goods," European Journal of Operational Research, Elsevier, vol. 173(2), pages 648-668, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deyan Yang & Jinyong Wang & Dongping Song, 2019. "Channel Structure Strategies of Supply Chains with Varying Green Cost and Governmental Interventions," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    2. Wang, Jian & He, Shulin, 2023. "Government interventions in closed-loop supply chains with modularity design," International Journal of Production Economics, Elsevier, vol. 264(C).
    3. Wensi Zhang & Jing Xiao & Lingfei Cai, 2020. "Joint Emission Reduction Strategy in Green Supply Chain under Environmental Regulation," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    4. Zhou, Xiaoxiao & Jia, Mengyu & Wang, Lu & Sharma, Gagan Deep & Zhao, Xin & Ma, Xiaowei, 2022. "Modelling and simulation of a four-group evolutionary game model for green innovation stakeholders: Contextual evidence in lens of sustainable development," Renewable Energy, Elsevier, vol. 197(C), pages 500-517.
    5. Essam Kaoud & Mohammad A. M. Abdel-Aal & Tatsuhiko Sakaguchi & Naoki Uchiyama, 2020. "Design and Optimization of the Dual-Channel Closed Loop Supply Chain with E-Commerce," Sustainability, MDPI, vol. 12(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    2. Pietro De Giovanni & Georges Zaccour, 2022. "A selective survey of game-theoretic models of closed-loop supply chains," Annals of Operations Research, Springer, vol. 314(1), pages 77-116, July.
    3. Pietro Giovanni & Georges Zaccour, 2019. "A selective survey of game-theoretic models of closed-loop supply chains," 4OR, Springer, vol. 17(1), pages 1-44, March.
    4. Haitao Chen & Zhaohui Dong & Gendao Li, 2020. "Government Reward-Penalty Mechanism in Dual-Channel Closed-Loop Supply Chain," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    5. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    6. Lin Zhao & Zongyu Mu, 2021. "Channel Strategies for the Two-Period Closed-Loop Supply Chain with E-Commerce," Mathematics, MDPI, vol. 9(11), pages 1-33, June.
    7. Yande Gong & Mengze Chen & Yuliang Zhuang, 2019. "Decision-Making and Performance Analysis of Closed-Loop Supply Chain under Different Recycling Modes and Channel Power Structures," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    8. Matsui, Kenji, 2023. "Dual-recycling channel reverse supply chain design of recycling platforms under acquisition price competition," International Journal of Production Economics, Elsevier, vol. 259(C).
    9. Shizhen Bai & Ling Ge & Xuelian Zhang, 2022. "Platform or direct channel: government-subsidized recycling strategies for WEEE," Information Systems and e-Business Management, Springer, vol. 20(2), pages 347-369, June.
    10. Zongsheng Huang, 2020. "Stochastic Differential Game in the Closed-Loop Supply Chain with Fairness Concern Retailer," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    11. Tong Shu & Qian Liu & Shou Chen & Shouyang Wang & Kin Keung Lai, 2018. "Pricing Decisions of CSR Closed-Loop Supply Chains with Carbon Emission Constraints," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    12. Zu-Jun, Ma & Zhang, Nian & Dai, Ying & Hu, Shu, 2016. "Managing channel profits of different cooperative models in closed-loop supply chains," Omega, Elsevier, vol. 59(PB), pages 251-262.
    13. Lijun Meng & Qiang Qiang & Zuqing Huang & Baoyou Zhang & Yuxiang Yang, 2020. "Optimal Pricing Strategy and Government Consumption Subsidy Policy in Closed-Loop Supply Chain with Third-Party Remanufacturer," Sustainability, MDPI, vol. 12(6), pages 1-29, March.
    14. Matsui, Kenji, 2022. "Optimal timing of acquisition price announcement for used products in a dual-recycling channel reverse supply chain," European Journal of Operational Research, Elsevier, vol. 300(2), pages 615-632.
    15. Chunmei Ma & Dan Huang, 2020. "Research on the impact of green innovation alliance mode on decision-making of two-cycle closed-loop supply chain," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 519-546, February.
    16. Jianmin Xiao & Zongsheng Huang, 2019. "A Stochastic Differential Game in the Closed-Loop Supply Chain with Third-Party Collecting and Fairness Concerns," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    17. Yan, Wei & Xiong, Yu & Xiong, Zhongkai & Guo, Nian, 2015. "Bricks vs. clicks: Which is better for marketing remanufactured products?," European Journal of Operational Research, Elsevier, vol. 242(2), pages 434-444.
    18. Gu, Wei & Wei, Lirong & Zhang, Wenqing & Yan, Xiangbin, 2019. "Evolutionary game analysis of cooperation between natural resource- and energy-intensive companies in reverse logistics operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 159-169.
    19. Choi, Tsan-Ming & Li, Yongjian & Xu, Lei, 2013. "Channel leadership, performance and coordination in closed loop supply chains," International Journal of Production Economics, Elsevier, vol. 146(1), pages 371-380.
    20. Zongsheng Huang & Jiajia Nie & Sang-Bing Tsai, 2017. "Dynamic Collection Strategy and Coordination of a Remanufacturing Closed-Loop Supply Chain under Uncertainty," Sustainability, MDPI, vol. 9(5), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5030-:d:267228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.