IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4202-d254579.html
   My bibliography  Save this article

Scientific Decision Framework for Evaluation of Renewable Energy Sources under Q-Rung Orthopair Fuzzy Set with Partially Known Weight Information

Author

Listed:
  • R. Krishankumar

    (School of Computing, SASTRA University, Thanjavur-613401, TN, India)

  • K. S. Ravichandran

    (School of Computing, SASTRA University, Thanjavur-613401, TN, India)

  • Samarjit Kar

    (Department of Mathematics, National Institute of Technology, Durgapur 713209, TN, India)

  • Fausto Cavallaro

    (Department of Economics, University of Molise, Via De Sanctis, 86100 Campobasso, Italy)

  • Edmundas Kazimieras Zavadskas

    (Institute of Sustainable Construction, Vilnius Gediminas Technical University, Sauletekio al. 11, Vilnius LT-10223, Lithuania)

  • Abbas Mardani

    (Department of Marketing, College of Business Administration, University of South Florida, Tampa, FL 33813, USA)

Abstract

As an attractive generalization of the intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy set (q-ROFS) provides the decision makers (DMs) with a wide window for preference elicitation. Previous studies on q-ROFS indicate that there is an urge for a decision framework which can make use of the available information in a proper manner for making rational decisions. Motivated by the superiority of q-ROFS, in this paper, a new decision framework is proposed, which provides scientific methods for multi-attribute group decision-making (MAGDM). Initially, a programming model is developed for calculating weights of attributes with the help of partially known information. Later, another programming model is developed for determining the weights of DMs with the help of partially known information. Preferences from different DMs are aggregated rationally by using the weights of DMs and extending generalized Maclaurin symmetric mean (GMSM) operator to q-ROFS, which can properly capture the interrelationship among attributes. Further, complex proportional assessment (COPRAS) method is extended to q-ROFS for prioritization of objects by using attributes’ weight vector and aggregated preference matrix. The applicability of the proposed framework is demonstrated by using a renewable energy source prioritization problem from an Indian perspective. Finally, the superiorities and weaknesses of the framework are discussed in comparison with state-of-the-art methods.

Suggested Citation

  • R. Krishankumar & K. S. Ravichandran & Samarjit Kar & Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Abbas Mardani, 2019. "Scientific Decision Framework for Evaluation of Renewable Energy Sources under Q-Rung Orthopair Fuzzy Set with Partially Known Weight Information," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4202-:d:254579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    2. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    3. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    4. Ana María González & Harrison Sandoval & Pilar Acosta & Felipe Henao, 2016. "On the Acceptance and Sustainability of Renewable Energy Projects—A Systems Thinking Perspective," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    5. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    6. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    7. Yelda Ayrim & Kumru Didem Atalay & Gülin Feryal Can, 2018. "A New Stochastic MCDM Approach Based on COPRAS," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 857-882, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Delong & Li, Zhe & Mishra, Arunodaya Raj, 2023. "Evaluation of the critical success factors of dynamic enterprise risk management in manufacturing SMEs using an integrated fuzzy decision-making model," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    2. Vytautas Palevičius & Rasa Ušpalytė-Vitkūnienė & Jonas Damidavičius & Tomas Karpavičius, 2020. "Concepts of Development of Alternative Travel in Autonomous Cars," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    3. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    4. Osman Taylan & Rami Alamoudi & Mohammad Kabli & Alawi AlJifri & Fares Ramzi & Enrique Herrera-Viedma, 2020. "Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions," Sustainability, MDPI, vol. 12(7), pages 1-27, March.
    5. Sudip Basack & Shantanu Dutta & Dipasri Saha, 2022. "Installation and Performance Study of a Vertical-Axis Wind Turbine Prototype Model," Sustainability, MDPI, vol. 14(23), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alok K. Pandey & R. Krishankumar & Dragan Pamucar & Fausto Cavallaro & Abbas Mardani & Samarjit Kar & K. S. Ravichandran, 2021. "A Bibliometric Review on Decision Approaches for Clean Energy Systems under Uncertainty," Energies, MDPI, vol. 14(20), pages 1-27, October.
    2. Ansari, Md. Fahim & Kharb, Ravinder Kumar & Luthra, Sunil & Shimmi, S.L. & Chatterji, S., 2013. "Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 163-174.
    3. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    4. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    5. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    6. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    7. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    8. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Vaidyanathan, Geeta & Sankaranarayanan, Ramani & Yap, Nonita T., 2019. "Bridging the chasm – Diffusion of energy innovations in poor infrastructure starved communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 243-255.
    10. Mansoor Mustafa & Muhammad Omer Farooq Malik & Ahsen Maqsoom, 2024. "Barriers to Solar PV Adoption in Developing Countries: Multiple Regression and Analytical Hierarchy Process Approach," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    11. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    13. Davies-Colley, Christian & Smith, Willie, 2012. "Implementing environmental technologies in development situations: The example of ecological toilets," Technology in Society, Elsevier, vol. 34(1), pages 1-8.
    14. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    15. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    16. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    17. R. Krishankumar & K. S. Ravichandran & M. Ifjaz Ahmed & Samarjit Kar & Xindong Peng, 2019. "Interval-Valued Probabilistic Hesitant Fuzzy Set Based Muirhead Mean for Multi-Attribute Group Decision-Making," Mathematics, MDPI, vol. 7(4), pages 1-16, April.
    18. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    19. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.
    20. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Socioeconomic and demographic factors that influence publics' awareness on the different forms of renewable energy sources," Renewable Energy, Elsevier, vol. 71(C), pages 480-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4202-:d:254579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.