IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3730-d246626.html
   My bibliography  Save this article

Mechanical Behavior of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste: A Design of Experiments Approach

Author

Listed:
  • Juan J. Galan

    (University of A Coruña, ETSI Caminos, Canales y Puertos, Campus de Elviña s/n, 15071 La Coruña, Spain)

  • Luís M. Silva

    (CIETI, ISEP-School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal)

  • Ignacio Pérez

    (University of A Coruña, ETSI Caminos, Canales y Puertos, Campus de Elviña s/n, 15071 La Coruña, Spain)

  • Ana R. Pasandín

    (University of A Coruña, ETSI Caminos, Canales y Puertos, Campus de Elviña s/n, 15071 La Coruña, Spain)

Abstract

The present work is a re-evaluation of previous research on the durability of hot-mix asphalt made with recycled concrete aggregates from construction and demolition waste (CDW) with a different approach. Response surface methodology (RSM) was used to conduct this study. The kind of natural aggregates (schist and calcite-dolomite), the recycled concrete aggregates percentage (0%, 20%, 40% and 60%) and the water saturation (0% and 100%) were the pertinent factors for this methodology. Indirect tensile stress (ITS) was determined in mixtures fabricated with 0%, 20%, 40% and 60% recycled concrete aggregates. According to the results, the ITS of the bituminous mixtures increases as the percentage of recycled concrete aggregate increases. This behavior is more significant when calcite-dolomite is used as a natural aggregate. Water saturation has the same influence in both natural aggregates. The indirect tensile strength ratio (ITSR) was calculated to evaluate the stripping potential. According to the Spanish specifications, the results suggest that the percentage of CDW that can be used for hot mixes is 17% when schist is used as natural aggregate and 14% for calcite-dolomite.

Suggested Citation

  • Juan J. Galan & Luís M. Silva & Ignacio Pérez & Ana R. Pasandín, 2019. "Mechanical Behavior of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste: A Design of Experiments Approach," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3730-:d:246626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Willi Haas & Fridolin Krausmann & Dominik Wiedenhofer & Markus Heinz, 2015. "How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 765-777, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandar Radević & Ivan Isailović & Michael P. Wistuba & Dimitrije Zakić & Marko Orešković & Goran Mladenović, 2020. "The Impact of Recycled Concrete Aggregate on the Stiffness, Fatigue, and Low-Temperature Performance of Asphalt Mixtures for Road Construction," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    2. Carlos D. A. Loureiro & Caroline F. N. Moura & Mafalda Rodrigues & Fernando C. G. Martinho & Hugo M. R. D. Silva & Joel R. M. Oliveira, 2022. "Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    3. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    4. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    5. Ali Mohammed Babalghaith & Suhana Koting & Nor Hafizah Ramli Sulong & Mohamed Rehan Karim & Syakirah Afiza Mohammed & Mohd Rasdan Ibrahim, 2020. "Effect of Palm Oil Clinker (POC) Aggregate on the Mechanical Properties of Stone Mastic Asphalt (SMA) Mixtures," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    6. Jiangang Yang & Chen Sun & Wenjie Tao & Jie Gao & Bocheng Huang & Jian Zhang, 2021. "Laboratory Investigation of Compaction Characteristics of Plant Recycled Hot-Mix Asphalt Mixture," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    7. Juan J. Galan & Luís M. Silva & Ana R. Pasandín & Ignacio Pérez, 2020. "Evaluation of the Resilient Modulus of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste," Sustainability, MDPI, vol. 12(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wajad Ulfat & Ayesha Mohyuddin & Muhammad Amjad & Tonni Agustiono Kurniawan & Beenish Mujahid & Sohail Nadeem & Mohsin Javed & Adnan Amjad & Abdul Qayyum Ashraf & Mohd Hafiz Dzarfan Othman & Sadaful H, 2023. "Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    2. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    3. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    4. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability, Springer, vol. 1(1), pages 231-242, June.
    5. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    6. Anne P. M. Velenturf & Phil Purnell, 2017. "Resource Recovery from Waste: Restoring the Balance between Resource Scarcity and Waste Overload," Sustainability, MDPI, vol. 9(9), pages 1-17, September.
    7. Yana Us & Tetyana Pimonenko & Oleksii Lyulyov, 2023. "Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review," Energies, MDPI, vol. 16(5), pages 1-18, February.
    8. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    9. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    10. Colin M. Rose & Julia A. Stegemann, 2018. "From Waste Management to Component Management in the Construction Industry," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    11. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    12. Piciu Gabriela-Cornelia, 2021. "Ways To Accelerate The Circular Economy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 129-134, October.
    13. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2018. "Climate Change, Financial Stability and Monetary Policy," Ecological Economics, Elsevier, vol. 152(C), pages 219-234.
    14. Concepción Garcés-Ayerbe & Pilar Rivera-Torres & Inés Suárez-Perales & Dante I. Leyva-de la Hiz, 2019. "Is It Possible to Change from a Linear to a Circular Economy? An Overview of Opportunities and Barriers for European Small and Medium-Sized Enterprise Companies," IJERPH, MDPI, vol. 16(5), pages 1-15, March.
    15. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    16. Javeed, Sohail Ahmad & Akram, Umair, 2024. "The factors behind block-chain technology that boost the circular economy: An organizational perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    17. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    18. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    19. Mihail Busu, 2019. "Adopting Circular Economy at the European Union Level and Its Impact on Economic Growth," Social Sciences, MDPI, vol. 8(5), pages 1-12, May.
    20. Georgios Lanaras-Mamounis & Anastasios Kipritsis & Thomas A. Tsalis & Konstantinos Ι. Vatalis & Ioannis E. Nikolaou, 2022. "A Framework for Assessing the Contribution of Firms to Circular Economy: a Triple-Level Approach," Circular Economy and Sustainability, Springer, vol. 2(3), pages 883-902, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3730-:d:246626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.