IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3247-d239219.html
   My bibliography  Save this article

Left-Side On-Ramp Metering for Improving Safety and Efficiency in Underground Expressway Systems

Author

Listed:
  • Minhua Shao

    (School of Transportation Engineering, Tongji University, 4800 Cao’an Highway, Shanghai 201804, China
    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Congcong Xie

    (School of Transportation Engineering, Tongji University, 4800 Cao’an Highway, Shanghai 201804, China
    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Lijun Sun

    (School of Transportation Engineering, Tongji University, 4800 Cao’an Highway, Shanghai 201804, China
    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Xiaomin Wan

    (School of Transportation Engineering, Tongji University, 4800 Cao’an Highway, Shanghai 201804, China
    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

  • Zhang Chen

    (School of Transportation Engineering, Tongji University, 4800 Cao’an Highway, Shanghai 201804, China
    Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China)

Abstract

As one of the effective measures of intelligent traffic control, on-ramp metering is often used to improve the traffic efficiency of expressways. Existing on-ramp metering research mainly discusses expressways with right-side on-ramps. However, for underground expressway systems (UESs), left-side on-ramps are frequently adopted to reduce the ground space occupied by ramp construction. Since traffic entering from the left and right sides of the mainline may have different traffic characteristics, on-ramp metering for UESs with left-side on-ramps should be explored specifically. This study examines the impacts of left-side on-ramps on the traffic safety and efficiency of UESs and proposes an effective on-ramp metering strategy. Firstly, using field data, traffic flow fundamental diagrams and speed dispersion are discussed to explore the traffic flow characteristics of the “left-in” UES. The results show that the capacity and critical occupancy are both reduced in left-side on-ramp compared to right-side on-ramp expressways. Meanwhile, the speed dispersion is higher in left-side on-ramp UESs, which means a higher accident risk. Based on this, considering traffic safety and efficiency, a novel two-parameter left-side on-ramp metering strategy for UESs is proposed, in which occupancy and speed are used as the control indicators simultaneously. Additionally, the mechanism of the metering strategy is explained. Finally, the proposed on-ramp metering strategy is simulated on a real UES. The results demonstrate the advantages of the proposed two-parameter on-ramp metering strategy for improving the traffic safety and efficiency of UESs.

Suggested Citation

  • Minhua Shao & Congcong Xie & Lijun Sun & Xiaomin Wan & Zhang Chen, 2019. "Left-Side On-Ramp Metering for Improving Safety and Efficiency in Underground Expressway Systems," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3247-:d:239219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chih-Lin Chung & Will W. Recker, 2014. "Characteristics of speed dispersion and its relationship to fundamental traffic flow parameters," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 581-597, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nima Dadashzadeh & Murat Ergun, 2019. "An Integrated Variable Speed Limit and ALINEA Ramp Metering Model in the Presence of High Bus Volume," Sustainability, MDPI, vol. 11(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Zhang & Jinliang Xu & Qianqian Liang & Fangchen Ma, 2020. "Modeling Impacts of Speed Reduction on Traffic Efficiency on Expressway Uphill Sections," Sustainability, MDPI, vol. 12(2), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3247-:d:239219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.