IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2938-d233725.html
   My bibliography  Save this article

Asphalt Pavement Acoustic Performance Model

Author

Listed:
  • Rita Kleizienė

    (Road Research Institute, Vilnius Gediminas Technical University, Linkmenu str. 28, LT-08217 Vilnius, Lithuania)

  • Ovidijus Šernas

    (Road Research Institute, Vilnius Gediminas Technical University, Linkmenu str. 28, LT-08217 Vilnius, Lithuania)

  • Audrius Vaitkus

    (Road Research Institute, Vilnius Gediminas Technical University, Linkmenu str. 28, LT-08217 Vilnius, Lithuania)

  • Rūta Simanavičienė

    (Department of Mathematical Statistics, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10223 Vilnius, Lithuania)

Abstract

Low-noise pavements are used as an effective method of traffic noise mitigation. Low-noise pavements reduce the noise that arises due to interactions between tires and road surfaces (tire/road) via the implementation of three main components: low pavement roughness, negative pavement texture, and a high pavement air-void content. The tire/road noise reduction capabilities of the wearing layer vary depending on the aggregate type, gradation, bitumen and air-void content, and density. Consequently, the demand for an accurate tire/road noise prediction model has arisen from the design of asphalt mixtures. This paper deals with how asphalt mixture components of the wearing layer influence tire/pavement noise reduction and presents a model for tire/road noise level prediction based on the asphalt mixture composition. The paper demonstrates that the noise reduction level of low-noise asphalt pavements is dependent on the composition of the asphalt mixture. Asphalt wearing layer mixture composition parameters were tested in the laboratory from cores taken from 18 road sections, where acoustic properties were measured using a close-proximity (CPX) method. The proposed linear model is based on the bitumen amount, the air-void content of the mixture and aggregate shape and involves materials that comply with the general requirements for high-quality asphalt mixtures. The model allows for the prediction of the tire/road noise level at the asphalt mixture design stage using asphalt mixture components and volumetric properties. The proposed model is the first stage in the building of a complex model with a much wider range of low-noise asphalts components, pavement profile depth and CPX-value relationships.

Suggested Citation

  • Rita Kleizienė & Ovidijus Šernas & Audrius Vaitkus & Rūta Simanavičienė, 2019. "Asphalt Pavement Acoustic Performance Model," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2938-:d:233725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2938/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Fredianelli & Marco Nastasi & Marco Bernardini & Francesco Fidecaro & Gaetano Licitra, 2020. "Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports," Sustainability, MDPI, vol. 12(5), pages 1-12, February.
    2. Tarık Serhat Bozkurt & Ahmet Sertaç Karakaş, 2022. "Investigation of Asphalt Pavement to Improve Environmental Noise and Water Sustainability," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    3. Hui Wang & Xun Zhang & Shengchuan Jiang, 2022. "A Laboratory and Field Universal Estimation Method for Tire–Pavement Interaction Noise (TPIN) Based on 3D Image Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    4. Jan Kunkler & Maximilian Braun & Florian Kellner, 2021. "Speed Limit Induced CO 2 Reduction on Motorways: Enhancing Discussion Transparency through Data Enrichment of Road Networks," Sustainability, MDPI, vol. 13(1), pages 1-22, January.
    5. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    6. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2938-:d:233725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.