IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3188-d168144.html
   My bibliography  Save this article

Simplified Analytical Model and Shaking Table Test Validation for Seismic Analysis of Mid-Rise Cold-Formed Steel Composite Shear Wall Building

Author

Listed:
  • Jihong Ye

    (Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 211116, China)

  • Liqiang Jiang

    (School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

To develop the cold-formed steel (CFS) building from low-rise to mid-rise, this paper proposes a new type of CFS composite shear wall building system. The continuous placed CFS concrete-filled tube (CFRST) column is used as the end stud, and the CFS-ALC wall casing concrete composite floor is used as the floor system. In order to predict the seismic behavior of this new structural system, a simplified analytical model is proposed in this paper, which includes the following. (1) A build-up section with “new material” is used to model the CFS tube and infilled concrete of CFRST columns; the section parameters are determined by the equivalent stiffness principle, and the “new material” is modeled by an elastic-perfect plastic model. (2) Two crossed nonlinear springs with hysteretic parameters are used to model a composite CFS shear wall; the Pinching04 material is used to input the hysteretic parameters for these springs, and two crossed rigid trusses are used to model the CFS beams. (3) A linear spring is used to model the uplift behavior of a hold-down connection, and the contribution of these connections for CFRST columns are considered and individually modeled. (4) The rigid diaphragm is used to model the composite floor system, and it is demonstrated by example analyses. Finally, a shaking table test is conducted on a five-story 1:2-scaled CFS composite shear wall building to valid the simplified model. The results are as follows. The errors on peak drift of the first story, the energy dissipation of the first story, the peak drift of the roof story, and the energy dissipation of the whole structure’s displacement time–history curves between the test and simplified models are about 10%, and the largest one of these errors is 20.8%. Both the time–history drift curves and cumulative energy curves obtained from the simplified model accurately track the deformation and energy dissipation processes of the test model. Such comparisons demonstrate the accuracy and applicability of the simplified model, and the proposed simplified model would provide the basis for the theoretical analysis and seismic design of CFS composite shear wall systems.

Suggested Citation

  • Jihong Ye & Liqiang Jiang, 2018. "Simplified Analytical Model and Shaking Table Test Validation for Seismic Analysis of Mid-Rise Cold-Formed Steel Composite Shear Wall Building," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3188-:d:168144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3188/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fattouh M. F. Shaker & Mohammed S. Daif & Ahmed Farouk Deifalla & Nehal M. Ayash, 2022. "Parametric Study on the Behavior of Steel Tube Columns with Infilled Concrete—An Analytical Study," Sustainability, MDPI, vol. 14(21), pages 1-45, October.
    2. George Taranu & Vasile-Mircea Venghiac & Ioana Olteanu-Dontov & Ancuta Rotaru & Ionut-Ovidiu Toma, 2022. "Sustainable Design for CFS Structures: Experimental Data and Numerical Models of Hinged Connections," Sustainability, MDPI, vol. 14(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3188-:d:168144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.