IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2882-d163663.html
   My bibliography  Save this article

Proposal for Feasibility Assessment Model for Landfill Mining and Its Implementation for Energy Generation Scenarios

Author

Listed:
  • Algimantas Bučinskas

    (Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas 50254, Lithuania)

  • Mait Kriipsalu

    (Department of Water Management, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia)

  • Gintaras Denafas

    (Department of Environmental Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas 50254, Lithuania)

Abstract

New approaches to waste management and requirements of a circular economy have changed landfill management. Therefore, the updating on these subjects is required. To benefit from landfill mining, information about composition and properties of disposed waste should be gathered. Decay of landfilled waste over time primarily determines the amount of recyclable and combustible matter as well as the amount of landfill gas formation. In this paper, we propose scenarios for landfill management and we create a conceptual model on their basis. A conceptual model is formulated and theoretical calculations are performed and compared with field research results in order to understand changes in the composition of landfilled waste. Correlations between theoretical and actual results were determined. Correlations of theoretical and actual results for the Torma (EE) and Alytus (LT) landfills were 0.68 and 0.78, respectively. In addition, the changes of refuse-derived fuel resources in Alytus landfill during the previous 10-year period were calculated. Finally, four different landfill closure and aftercare scenarios with respect to energy generation were created, assessed, and compared.

Suggested Citation

  • Algimantas Bučinskas & Mait Kriipsalu & Gintaras Denafas, 2018. "Proposal for Feasibility Assessment Model for Landfill Mining and Its Implementation for Energy Generation Scenarios," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2882-:d:163663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johansson, N. & Krook, J. & Eklund, M., 2017. "The institutional capacity for a resource transition—A critical review of Swedish governmental commissions on landfill mining," Environmental Science & Policy, Elsevier, vol. 70(C), pages 46-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    2. Isabella Pecorini & Renato Iannelli, 2020. "Characterization of Excavated Waste of Different Ages in View of Multiple Resource Recovery in Landfill Mining," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    3. Victoria E. Huntington & Frédéric Coulon & Stuart T. Wagland, 2022. "Innovative Resource Recovery from Industrial Sites: A Critical Review," Sustainability, MDPI, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tran Thu Trang & Simon R. Bush & Judith van Leeuwen, 2023. "Enhancing institutional capacity in a centralized state: The case of industrial water use efficiency in Vietnam," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 210-222, February.
    2. Inna Pitak & Gintaras Denafas & Arūnas Baltušnikas & Marius Praspaliauskas & Stasė-Irena Lukošiūtė, 2023. "Proposal for Implementation of Extraction Mechanism of Raw Materials during Landfill Mining and Its Application in Alternative Fuel Production," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    3. Guoqing Qian & Chuansong Duanmu & Nisar Ali & Adnan Khan & Sumeet Malik & Yong Yang & Muhammad Bilal, 2022. "Hazardous wastes, adverse impacts, and management strategies: a way forward to environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9731-9756, August.
    4. Hwang, Haejin & Kim, Sunghoon & García, Álvaro González & Kim, Jiyong, 2021. "Global sensitivity analysis for assessing the economic feasibility of renewable energy systems for an off-grid electrified city," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2882-:d:163663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.