IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2827-d162866.html
   My bibliography  Save this article

Re-Planning the Intermodal Transportation of Emergency Medical Supplies with Updated Transfer Centers

Author

Listed:
  • Junhu Ruan

    (College of Economics and Management, Northwest A & F University, Yangling 712100, China
    Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China)

  • Felix T. S. Chan

    (Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China)

  • Xiaofeng Zhao

    (School of Management Engineering and Business, Hebei University of Engineering, Handan 056038, China)

Abstract

Helicopters and vehicles are often jointly used to transport key relief supplies and respond to disaster situations when supply nodes are far away from demand nodes or the key roads to affected areas are cut off. Emergency transfer centers (ETCs) are often changed due to secondary disasters and further rescue, so the extant intermodal transportation plan of helicopters and vehicles needs to be adjusted accordingly. Disruption management is used to re-plan emergency intermodal transportation with updated ETCs in this study. The basic idea of disruption management is to minimize the negative impact resulting from unexpected events. To measure the impact of updated ETCs on the extant plan, the authors consider three kinds of rescue participators, that is, supply recipients, rescue drivers, and transport schedulers, whose main concerns are supply arrival time, intermodal routes and transportation capacity, respectively. Based on the measurement, the authors develop a recovery model for minimizing the disturbance caused by the updated ETCs and design an improved genetic algorithm to generate solutions for the recovery model. Numerical experiments verify the effectiveness of this model and algorithm and discern that this disruption management method could produce recovery plans with shorter average waiting times, smaller disturbances for all the supply arrival times, intermodal routes and transportation capacity, and shorter running times. The comparison shows the advantage of this disruption management method over the rescheduling method.

Suggested Citation

  • Junhu Ruan & Felix T. S. Chan & Xiaofeng Zhao, 2018. "Re-Planning the Intermodal Transportation of Emergency Medical Supplies with Updated Transfer Centers," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2827-:d:162866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    2. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    3. Yuan, Jinjiang & Mu, Yundong, 2007. "Rescheduling with release dates to minimize makespan under a limit on the maximum sequence disruption," European Journal of Operational Research, Elsevier, vol. 182(2), pages 936-944, October.
    4. Jin Qin & Yong Ye & Bi-rong Cheng & Xiaobo Zhao & Linling Ni, 2017. "The Emergency Vehicle Routing Problem with Uncertain Demand under Sustainability Environments," Sustainability, MDPI, vol. 9(2), pages 1-24, February.
    5. Qi, Xiangtong & Bard, Jonathan F. & Yu, Gang, 2004. "Supply chain coordination with demand disruptions," Omega, Elsevier, vol. 32(4), pages 301-312, August.
    6. Tiaojun Xiao & Gang Yu & Zhaohan Sheng & Yusen Xia, 2005. "Coordination of a Supply Chain with One-Manufacturer and Two-Retailers Under Demand Promotion and Disruption Management Decisions," Annals of Operations Research, Springer, vol. 135(1), pages 87-109, March.
    7. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "A Lagrangian heuristic for the real-time vehicle rescheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 419-433, May.
    8. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    9. Wang, Xuping & Ruan, Junhu & Shi, Yan, 2012. "A recovery model for combinational disruptions in logistics delivery: Considering the real-world participators," International Journal of Production Economics, Elsevier, vol. 140(1), pages 508-520.
    10. Iannoni, Ana Paula & Morabito, Reinaldo, 2007. "A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 755-771, November.
    11. J.H. Ruan & X.P. Wang & F.T.S. Chan & Y. Shi, 2016. "Optimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clustering," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4368-4386, July.
    12. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    13. Sukho Jin & Sukjae Jeong & Jangyeop Kim & Kyungsup Kim, 2015. "A logistics model for the transport of disaster victims with various injuries and survival probabilities," Annals of Operations Research, Springer, vol. 230(1), pages 17-33, July.
    14. Sarkar, Sourish & Kumar, Sanjay, 2015. "A behavioral experiment on inventory management with supply chain disruption," International Journal of Production Economics, Elsevier, vol. 169(C), pages 169-178.
    15. Q Mu & Z Fu & J Lysgaard & R Eglese, 2011. "Disruption management of the vehicle routing problem with vehicle breakdown," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 742-749, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wanying (Amanda) & De Koster, René B.M. & Gong, Yeming, 2021. "Performance evaluation of automated medicine delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    2. Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    3. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    4. Q Mu & Z Fu & J Lysgaard & R Eglese, 2011. "Disruption management of the vehicle routing problem with vehicle breakdown," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 742-749, April.
    5. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    7. Han, Xiaohua & Wu, Haiyan & Yang, Qianxia & Shang, Jennifer, 2016. "Reverse channel selection under remanufacturing risks: Balancing profitability and robustness," International Journal of Production Economics, Elsevier, vol. 182(C), pages 63-72.
    8. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Chen, Kebing & Xiao, Tiaojun, 2009. "Demand disruption and coordination of the supply chain with a dominant retailer," European Journal of Operational Research, Elsevier, vol. 197(1), pages 225-234, August.
    10. Jingfu Huang & Gaoke Wu & Yiju Wang, 2021. "Retailer’s Emergency Ordering Policy When Facing an Impending Supply Disruption," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    11. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    12. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    13. Ji, Xiang & Sun, Jiasen & Wang, Zebin, 2017. "Turn bad into good: Using transshipment-before-buyback for disruptions of stochastic demand," International Journal of Production Economics, Elsevier, vol. 185(C), pages 150-161.
    14. Cao, Erbao & Wan, Can & Lai, Mingyong, 2013. "Coordination of a supply chain with one manufacturer and multiple competing retailers under simultaneous demand and cost disruptions," International Journal of Production Economics, Elsevier, vol. 141(1), pages 425-433.
    15. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    16. Dmitry Ivanov & Maxim Rozhkov, 2020. "Coordination of production and ordering policies under capacity disruption and product write-off risk: an analytical study with real-data based simulations of a fast moving consumer goods company," Annals of Operations Research, Springer, vol. 291(1), pages 387-407, August.
    17. Xiao, Tiaojun & Qi, Xiangtong & Yu, Gang, 2007. "Coordination of supply chain after demand disruptions when retailers compete," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 162-179, September.
    18. Faraz Salehi & Masoud Mahootchi & Seyed Mohammad Moattar Husseini, 2019. "Developing a robust stochastic model for designing a blood supply chain network in a crisis: a possible earthquake in Tehran," Annals of Operations Research, Springer, vol. 283(1), pages 679-703, December.
    19. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    20. Sahitya Elluru & Hardik Gupta & Harpreet Kaur & Surya Prakash Singh, 2019. "Proactive and reactive models for disaster resilient supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 199-224, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2827-:d:162866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.