IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2309-d156122.html
   My bibliography  Save this article

Trade-Off between the Social and Environmental Performance of Green Concrete: The Case of 6 Countries

Author

Listed:
  • Jun Kono

    (Division of Building Technology, Chalmers University of Technology, 41296 Gothenburg, Sweden)

  • York Ostermeyer

    (Division of Building Technology, Chalmers University of Technology, 41296 Gothenburg, Sweden)

  • Holger Wallbaum

    (Division of Building Technology, Chalmers University of Technology, 41296 Gothenburg, Sweden)

Abstract

Improving the sustainability performance of construction industry is driven by two forces: regulatory push (policy initiatives), and market pull where improving a corporate sustainability performance can be financially beneficial for enterprises. Through the investigation of the sustainability hotspots and impacts, concerning social and environmental, of the steel slag mixed concrete (green concrete) the study assessed the factors relevant for its performance and examined how to improve them. Hotspot analysis and impact assessments were conducted by social and environmental life cycle assessment (LCA). The assessed green concrete represented not just the variety of geographic representation but also the product designs (three different slag contents) and the potential difference occurring from the corporate efforts, where four classes were introduced. The investigation of the social and environmental hotspots of the green concrete revealed a difference in the relation between the sustainability performance and steel slags. While the increased slag content resulted in worse social performance, the increase improved the environmental performance in all six investigated case countries. This trade-off between the social and environmental performance implied the limits of the sustainable product design and suggested the effectiveness of the supply chain management for improving the two sustainability performances for the green concrete.

Suggested Citation

  • Jun Kono & York Ostermeyer & Holger Wallbaum, 2018. "Trade-Off between the Social and Environmental Performance of Green Concrete: The Case of 6 Countries," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2309-:d:156122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sabrina Neugebauer & Marzia Traverso & René Scheumann & Ya-Ju Chang & Kirana Wolf & Matthias Finkbeiner, 2014. "Impact Pathways to Address Social Well-Being and Social Justice in SLCA—Fair Wage and Level of Education," Sustainability, MDPI, vol. 6(8), pages 1-19, July.
    2. Catherine Benoît Norris & Gregory A. Norris & Deana Aulisio, 2014. "Efficient Assessment of Social Hotspots in the Supply Chains of 100 Product Categories Using the Social Hotspots Database," Sustainability, MDPI, vol. 6(10), pages 1-12, October.
    3. Sabrina Neugebauer & Silvia Forin & Matthias Finkbeiner, 2016. "From Life Cycle Costing to Economic Life Cycle Assessment—Introducing an Economic Impact Pathway," Sustainability, MDPI, vol. 8(5), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo J. Bonilla-Alicea & Katherine Fu, 2019. "Systematic Map of the Social Impact Assessment Field," Sustainability, MDPI, vol. 11(15), pages 1-30, July.
    2. Jianing Wei & Jixiao Cui & Yinan Xu & Jinna Li & Xinyu Lei & Wangsheng Gao & Yuanquan Chen, 2022. "Social Life Cycle Assessment of Major Staple Grain Crops in China," Agriculture, MDPI, vol. 12(4), pages 1-22, April.
    3. Vojtěch Václavík & Marcela Ondová & Tomáš Dvorský & Adriana Eštoková & Martina Fabiánová & Lukáš Gola, 2020. "Sustainability Potential Evaluation of Concrete with Steel Slag Aggregates by the LCA Method," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    4. Husnain Arshad & Muhammad Jamaluddin Thaheem & Beenish Bakhtawar & Asheem Shrestha, 2021. "Evaluation of Road Infrastructure Projects: A Life Cycle Sustainability-Based Decision-Making Approach," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    5. Sara M. Andrés-Vizán & Joaquín M. Villanueva-Balsera & J. Valeriano Álvarez-Cabal & Gemma M. Martínez-Huerta, 2020. "Classification of BOF Slag by Data Mining Techniques According to Chemical Composition," Sustainability, MDPI, vol. 12(8), pages 1-10, April.
    6. Adriana Liute & Maria Rosa De Giacomo, 2022. "The environmental performance of UK‐based B Corp companies: An analysis based on the triple bottom line approach," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 810-827, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roope Husgafvel, 2021. "Exploring Social Sustainability Handprint—Part 1: Handprint and Life Cycle Thinking and Approaches," Sustainability, MDPI, vol. 13(20), pages 1-36, October.
    2. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    3. Simone Blanc & Stefano Massaglia & Filippo Brun & Cristiana Peano & Angela Mosso & Nicole Roberta Giuggioli, 2019. "Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    4. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    5. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    6. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    7. Zbigniew Leszczyński & Tomasz Jasiński, 2020. "Comparison of Product Life Cycle Cost Estimating Models Based on Neural Networks and Parametric Techniques—A Case Study for Induction Motors," Sustainability, MDPI, vol. 12(20), pages 1-14, October.
    8. Witold Chmielarz & Marek Zborowski, 2022. "On the Assessment of e-Banking Websites Supporting Sustainable Development Goals," Energies, MDPI, vol. 15(1), pages 1-20, January.
    9. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Giacomo Falcone & Anna Irene De Luca & Teodora Stillitano & Alfio Strano & Giuseppa Romeo & Giovanni Gulisano, 2016. "Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis," Sustainability, MDPI, vol. 8(8), pages 1-34, August.
    11. Georges Atallah & Faris Tarlochan, 2021. "Comparison between Variable and Constant Refrigerant Flow Air Conditioning Systems in Arid Climate: Life Cycle Cost Analysis and Energy Savings," Sustainability, MDPI, vol. 13(18), pages 1-13, September.
    12. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    13. Domingo Nevado-Peña & Víctor-Raúl López-Ruiz & José-Luis Alfaro-Navarro, 2015. "The Effects of Environmental and Social Dimensions of Sustainability in Response to the Economic Crisis of European Cities," Sustainability, MDPI, vol. 7(7), pages 1-15, June.
    14. Sunghoon Kim & Adam Beier & H. Brett Schreyer & Bhavik R. Bakshi, 2022. "Environmental Life Cycle Assessment of a Novel Cultivated Meat Burger Patty in the United States," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    15. Teodora Stillitano & Emanuele Spada & Nathalie Iofrida & Giacomo Falcone & Anna Irene De Luca, 2021. "Sustainable Agri-Food Processes and Circular Economy Pathways in a Life Cycle Perspective: State of the Art of Applicative Research," Sustainability, MDPI, vol. 13(5), pages 1-28, February.
    16. Sabrina Neugebauer & Silvia Forin & Matthias Finkbeiner, 2016. "From Life Cycle Costing to Economic Life Cycle Assessment—Introducing an Economic Impact Pathway," Sustainability, MDPI, vol. 8(5), pages 1-23, April.
    17. Irene Huertas-Valdivia & Anna Maria Ferrari & Davide Settembre-Blundo & Fernando E. García-Muiña, 2020. "Social Life-Cycle Assessment: A Review by Bibliometric Analysis," Sustainability, MDPI, vol. 12(15), pages 1-25, August.
    18. Dieuwertje Schrijvers & Philippe Loubet & Guido Sonnemann, 2020. "Archetypes of Goal and Scope Definitions for Consistent Allocation in LCA," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    19. Pırıl Tekin & Rızvan Erol, 2017. "A New Dynamic Pricing Model for the Effective Sustainability of Perishable Product Life Cycle," Sustainability, MDPI, vol. 9(8), pages 1-22, July.
    20. Lennart Hingst & Antal Dér & Christoph Herrmann & Peter Nyhuis, 2023. "Towards a Holistic Life Cycle Costing and Assessment of Factories: Qualitative Modeling of Interdependencies in Factory Systems," Sustainability, MDPI, vol. 15(5), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2309-:d:156122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.