IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1290-d142527.html
   My bibliography  Save this article

Efficient Protection of Android Applications through User Authentication Using Peripheral Devices

Author

Listed:
  • Jinseong Kim

    (School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea)

  • Im Y. Jung

    (School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea)

Abstract

Android applications store large amounts of sensitive information that may be exposed and exploited. To prevent this security risk, some applications such as Syrup and KakaoTalk use physical device values to authenticate or encrypt application data. However, by manipulating these physical device values, an attacker can circumvent the authentication by executing a Same Identifier Attack and obtain the same application privileges as the user. In our work, WhatsApp, KakaoTalk, Facebook, Amazon, and Syrup were subjected to the Same Identifier Attack, and it was found that an attacker could gain the same privileges as the user, in all five applications. To solve such a problem, we propose a technical scheme—User Authentication using Peripheral Devices. We applied the proposed scheme to a Nexus 5X smartphone running Android version 7.1 and confirmed that the average execution time was 0.005 s, which does not affect the other applications’ execution significantly. We also describe the security aspects of the proposed scheme and its compatibility with the Android platform and other applications. The proposed scheme is practical and efficient in terms of resource usage; therefore, it will be useful for Android users to improve Android application security.

Suggested Citation

  • Jinseong Kim & Im Y. Jung, 2018. "Efficient Protection of Android Applications through User Authentication Using Peripheral Devices," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1290-:d:142527
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1290/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1290-:d:142527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.