IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p659-d134117.html
   My bibliography  Save this article

A Preference Model for Supplier Selection Based on Hesitant Fuzzy Sets

Author

Listed:
  • Zhexuan Zhou

    (College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Yajie Dou

    (College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Tianjun Liao

    (State Key Laboratory of Complex System Simulation, Beijing Institute of System Engineering, 10 An Xiang Bei Li Road., Beijing, 100101, China)

  • Yuejin Tan

    (College of System Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

The supplier selection problem is a widespread concern in the modern commercial economy. Ranking suppliers involves many factors and poses significant difficulties for decision makers. Supplier selection is a multi-criteria and multi-objective problem, which leads to decision makers forming their own preferences. In addition, there are both quantifiable and non-quantifiable attributes related to their preferences. To solve this problem, this paper presents a preference model based on hesitant fuzzy sets (HFS) to select suppliers. The cost and service quality of suppliers are the main considerations in the proposed model. HFS with interactive and multi-criteria decision making are used to evaluate the non-quantifiable attributes of service quality, which include competitive display, qualification ability, suitability and competitiveness of solutions, and relational fitness and dynamics. Finally, a numerical example of supplier selection for a high-end equipment manufacturer is provided to illustrate the applicability of the proposed model. The preferences of a decision maker are then analyzed by altering preference parameters.

Suggested Citation

  • Zhexuan Zhou & Yajie Dou & Tianjun Liao & Yuejin Tan, 2018. "A Preference Model for Supplier Selection Based on Hesitant Fuzzy Sets," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:659-:d:134117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Ghodsypour, S. H. & O'Brien, C., 1998. "A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming," International Journal of Production Economics, Elsevier, vol. 56(1), pages 199-212, September.
    3. Tam, Maggie C. Y. & Tummala, V. M. Rao, 2001. "An application of the AHP in vendor selection of a telecommunications system," Omega, Elsevier, vol. 29(2), pages 171-182, April.
    4. Huiru Zhao & Sen Guo, 2014. "Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability," Sustainability, MDPI, vol. 6(1), pages 1-19, January.
    5. Degraeve, Zeger & Labro, Eva & Roodhooft, Filip, 2000. "An evaluation of vendor selection models from a total cost of ownership perspective," European Journal of Operational Research, Elsevier, vol. 125(1), pages 34-58, August.
    6. Miguel Angel Ortiz Barrios & Fabio De Felice & Kevin Parra Negrete & Brandon Aleman Romero & Adriana Yaruro Arenas & Antonella Petrillo, 2016. "An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 861-885, July.
    7. Kavilal, E.G. & Prasanna Venkatesan, S. & Harsh Kumar, K.D., 2017. "An integrated fuzzy approach for prioritizing supply chain complexity drivers of an Indian mining equipment manufacturer," Resources Policy, Elsevier, vol. 51(C), pages 204-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huilin Li & Jiaqi Yang & Ziquan Xiang, 2022. "A Fuzzy Linguistic Multi-Criteria Decision-Making Approach to Assess Emergency Suppliers," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    2. Weizhang Liang & Bing Dai & Guoyan Zhao & Hao Wu, 2019. "Assessing the Performance of Green Mines via a Hesitant Fuzzy ORESTE–QUALIFLEX Method," Mathematics, MDPI, vol. 7(9), pages 1-19, August.
    3. Jing Zhang & Dong Yang & Qiang Li & Benjamin Lev & Yanfang Ma, 2020. "Research on Sustainable Supplier Selection Based on the Rough DEMATEL and FVIKOR Methods," Sustainability, MDPI, vol. 13(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wetzstein, Anton & Hartmann, Evi & Benton jr., W.C. & Hohenstein, Nils-Ole, 2016. "A systematic assessment of supplier selection literature – State-of-the-art and future scope," International Journal of Production Economics, Elsevier, vol. 182(C), pages 304-323.
    2. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    3. Huang, Samuel H. & Keskar, Harshal, 2007. "Comprehensive and configurable metrics for supplier selection," International Journal of Production Economics, Elsevier, vol. 105(2), pages 510-523, February.
    4. Ali Salmasnia & Hamid Daliri & Ali Ghorbanian & Hadi Mokhtari, 2018. "A statistical analysis and simulation based approach to an uncertain supplier selection problem with discount option," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1250-1259, December.
    5. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    6. Aly Owida & P.J. Byrne & Cathal Heavey & Paul Blake & Khaled S. El-Kilany, 2016. "A simulation based continuous improvement approach for manufacturing based field repair service contracting," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6458-6477, November.
    7. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    8. Guo, Cong & Li, Xueping, 2014. "A multi-echelon inventory system with supplier selection and order allocation under stochastic demand," International Journal of Production Economics, Elsevier, vol. 151(C), pages 37-47.
    9. Hu, Kuo-Jen & Yu, Vincent F., 2016. "An integrated approach for the electronic contract manufacturer selection problem," Omega, Elsevier, vol. 62(C), pages 68-81.
    10. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 2017. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 18(2), pages 131-147, June.
    11. Wang, Ge & Huang, Samuel H. & Dismukes, John P., 2004. "Product-driven supply chain selection using integrated multi-criteria decision-making methodology," International Journal of Production Economics, Elsevier, vol. 91(1), pages 1-15, September.
    12. María-José Verdecho & Faustino Alarcón-Valero & David Pérez-Perales & Juan-José Alfaro-Saiz & Raúl Rodríguez-Rodríguez, 2021. "A methodology to select suppliers to increase sustainability within supply chains," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1231-1251, December.
    13. Irfan Ali & Armin Fügenschuh & Srikant Gupta & Umar Muhammad Modibbo, 2020. "The LR-Type Fuzzy Multi-Objective Vendor Selection Problem in Supply Chain Management," Mathematics, MDPI, vol. 8(9), pages 1-25, September.
    14. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    15. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    16. Syed Abou Iltaf Hussain & Debasish Baruah & Bapi Dutta & Uttam Kumar Mandal & Sankar Prasad Mondal & Thuleswar Nath, 2019. "Evaluating the impact of service quality on the dynamics of customer satisfaction in the telecommunication industry of Jorhat, Assam," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(1), pages 31-53, May.
    17. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    18. Kumar, Manoj & Vrat, Prem & Shankar, Ravi, 2006. "A fuzzy programming approach for vendor selection problem in a supply chain," International Journal of Production Economics, Elsevier, vol. 101(2), pages 273-285, June.
    19. Oliveira, Rui Carvalho & Lourenco, Joao Carlos, 2002. "A multicriteria model for assigning new orders to service suppliers," European Journal of Operational Research, Elsevier, vol. 139(2), pages 390-399, June.
    20. Omar Abbaas & Jose A. Ventura, 2024. "An Iterative Procurement Combinatorial Auction Mechanism for the Multi-Item, Multi-Sourcing Supplier-Selection and Order-Allocation Problem under a Flexible Bidding Language and Price-Sensitive Demand," Mathematics, MDPI, vol. 12(14), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:659-:d:134117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.