IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p608-d133724.html
   My bibliography  Save this article

A Statistical Tool to Detect and Locate Abnormal Operating Conditions in Photovoltaic Systems

Author

Listed:
  • Silvano Vergura

    (Department of Electrical and Information Engineering, Polytechnic University of Bari, St. E. Orabona 4, I-70125 Bari, Italy)

Abstract

The paper is focused on the energy performance of the photovoltaic systems constituted by several arrays. The main idea is to compare the statistical distributions of the energy dataset of the arrays. For small-medium-size photovoltaic plant, the environmental conditions affect equally all the arrays, so the comparative procedure is independent from the solar radiation and the cell temperature; therefore, it can also be applied to a photovoltaic plant not equipped by a weather station. If the procedure is iterated and new energy data are added at each new run, the analysis becomes cumulative and allows following the trend of some benchmarks. The methodology is based on an algorithm, which suggests the user, step by step, the suitable statistical tool to use. The first one is the Hartigan’s dip test that is able to discriminate the unimodal distribution from the multimodal one. This stage is very important to decide whether a parametric test can be used or not, because the parametric tests—based on known distributions—are usually more performing than the nonparametric ones. The procedure is effective in detecting and locating abnormal operating conditions, before they become failures. A case study is proposed, based on a real operating photovoltaic plant. Three periods are separately analyzed: one month, six months, and one year.

Suggested Citation

  • Silvano Vergura, 2018. "A Statistical Tool to Detect and Locate Abnormal Operating Conditions in Photovoltaic Systems," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:608-:d:133724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klaassen, Chris A. J. & Mokveld, Philip J. & van Es, Bert, 2000. "Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 131-135, November.
    2. Rohatgi, Vijay K. & Székely, Gábor J., 1989. "Sharp inequalities between skewness and kurtosis," Statistics & Probability Letters, Elsevier, vol. 8(4), pages 297-299, September.
    3. Leloux, Jonathan & Narvarte, Luis & Trebosc, David, 2012. "Review of the performance of residential PV systems in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1369-1376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuster-Palop, Enrique & Vargas-Salgado, Carlos & Ferri-Revert, Juan Carlos & Payá, Jorge, 2022. "Performance analysis and modelling of a 50 MW grid-connected photovoltaic plant in Spain after 12 years of operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvano Vergura, 2018. "Hypothesis Tests-Based Analysis for Anomaly Detection in Photovoltaic Systems in the Absence of Environmental Parameters," Energies, MDPI, vol. 11(3), pages 1-18, February.
    2. Silvano Vergura & Mario Carpentieri, 2017. "Statistics to Detect Low-Intensity Anomalies in PV Systems," Energies, MDPI, vol. 11(1), pages 1-12, December.
    3. Ogasawara, Haruhiko, 2017. "Extensions of Pearson’s inequality between skewness and kurtosis to multivariate cases," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 12-16.
    4. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    5. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    6. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    7. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    8. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    9. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    10. Essah, Emmanuel A. & Rodriguez Arguelles, Ana & Glover, Neil, 2015. "Assessing the performance of a building integrated BP c-Si PV system," Renewable Energy, Elsevier, vol. 73(C), pages 36-45.
    11. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.
    12. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    13. Dobaria, Bhaveshkumar & Pandya, Mahesh & Aware, Mohan, 2016. "Analytical assessment of 5.05 kWp grid tied photovoltaic plant performance on the system level in a composite climate of western India," Energy, Elsevier, vol. 111(C), pages 47-51.
    14. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    15. De Boeck, L. & Van Asch, S. & De Bruecker, P. & Audenaert, A., 2016. "Comparison of support policies for residential photovoltaic systems in the major EU markets through investment profitability," Renewable Energy, Elsevier, vol. 87(P1), pages 42-53.
    16. Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
    17. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    18. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Yen Lee & David Kaplan, 2018. "Generating Multivariate Ordinal Data via Entropy Principles," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 156-181, March.
    20. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:608-:d:133724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.