IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p488-d131520.html
   My bibliography  Save this article

Low-Cost Implementation of a Named Entity Recognition System for Voice-Activated Human-Appliance Interfaces in a Smart Home

Author

Listed:
  • Geonwoo Park

    (Program of Computer and Communications Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Harksoo Kim

    (Program of Computer and Communications Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

Abstract

When we develop voice-activated human-appliance interface systems in smart homes, named entity recognition (NER) is an essential tool for extracting execution targets from natural language commands. Previous studies on NER systems generally include supervised machine-learning methods that require a substantial amount of human-annotated training corpus. In the smart home environment, categories of named entities should be defined according to voice-activated devices (e.g., food names for refrigerators and song titles for music players). The previous machine-learning methods make it difficult to change categories of named entities because a large amount of the training corpus should be newly constructed by hand. To address this problem, we present a semi-supervised NER system to minimize the time-consuming and labor-intensive task of constructing the training corpus. Our system uses distant supervision methods with two kinds of auto-labeling processes: auto-labeling based on heuristic rules for single-class named entity corpus generation and auto-labeling based on a pre-trained single-class NER model for multi-class named entity corpus generation. Then, our system improves NER accuracy by using a bagging-based active learning method. In our experiments that included a generic domain that featured 11 named entity classes and a context-specific domain about baseball that featured 21 named entity classes, our system demonstrated good performances in both domains, with F1-measures of 0.777 and 0.958, respectively. Since our system was built from a relatively small human-annotated training corpus, we believe it is a viable alternative to current NER systems in smart home environments.

Suggested Citation

  • Geonwoo Park & Harksoo Kim, 2018. "Low-Cost Implementation of a Named Entity Recognition System for Voice-Activated Human-Appliance Interfaces in a Smart Home," Sustainability, MDPI, vol. 10(2), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:488-:d:131520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/488/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Ding & Chifu Yang & Zhihong Tian & Chunzhi Yi & Yunsheng Fu & Feng Jiang, 2018. "sEMG-Based Gesture Recognition with Convolution Neural Networks," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    2. Ahmed Ismail & Samir Abdlerazek & Ibrahim M. El-Henawy, 2020. "Development of Smart Healthcare System Based on Speech Recognition Using Support Vector Machine and Dynamic Time Warping," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    3. Younjoo Cho & Anseop Choi, 2020. "Application of Affordance Factors for User-Centered Smart Homes: A Case Study Approach," Sustainability, MDPI, vol. 12(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:488-:d:131520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.