IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4765-d190382.html
   My bibliography  Save this article

Use of Steel and Polyolefin Fibres in the La Canda Tunnels: Applying MIVES for Assessing Sustainability Evaluation

Author

Listed:
  • Marcos G. Alberti

    (Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/Profesor Aranguren, s/n, 28040 Madrid, Spain)

  • Jaime C. Gálvez

    (Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/Profesor Aranguren, s/n, 28040 Madrid, Spain)

  • Alejandro Enfedaque

    (Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/Profesor Aranguren, s/n, 28040 Madrid, Spain)

  • Ana Carmona

    (Sika S.A.U.Carretera de Fuencarral, 72, Alcobendas, 28108 Madrid, Spain)

  • Cristina Valverde

    (Sika S.A.U.Carretera de Fuencarral, 72, Alcobendas, 28108 Madrid, Spain)

  • Gabriel Pardo

    (Sika S.A.U.Carretera de Fuencarral, 72, Alcobendas, 28108 Madrid, Spain)

Abstract

Construction involves the use of significant quantities of raw materials and entails high-energy consumption. For the sake of choosing the most appropriate solution that considers environmental and sustainable concepts, tools such as the integrated value model for sustainable assessment (Modelo Integrado de Valor para una Evaluación Sostenible, MIVES) used in Spain, plays a key role in obtaining the best solution. MIVES is a multi-criteria decision-making method based on the value function concept and the seminars delivered by experts. Such tools, in order to show how they may work, require application to case studies. In this paper, two concrete slabs manufactured with differing reinforcements during the construction of the La Canda Tunnels are compared by means of MIVES. The two concrete slabs were reinforced with a conventional steel-mesh and with polyolefin fibres. This research was focussed on the main aspects affecting the construction. That is to say, the environmental, economic, and social factors were assessed by the method, being of special impact the issues related with maintenance of the structure. The results showed that from the point of view of sustainability, the use of polyolefin fibres provided a significant advantage, mainly due to the lower maintenance required.

Suggested Citation

  • Marcos G. Alberti & Jaime C. Gálvez & Alejandro Enfedaque & Ana Carmona & Cristina Valverde & Gabriel Pardo, 2018. "Use of Steel and Polyolefin Fibres in the La Canda Tunnels: Applying MIVES for Assessing Sustainability Evaluation," Sustainability, MDPI, vol. 10(12), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4765-:d:190382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oriol Pons & Albert De la Fuente & Antonio Aguado, 2016. "The Use of MIVES as a Sustainability Assessment MCDM Method for Architecture and Civil Engineering Applications," Sustainability, MDPI, vol. 8(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Huymajer & Matthias Woegerbauer & Leopold Winkler & Alexandra Mazak-Huemer & Hubert Biedermann, 2022. "An Interdisciplinary Systematic Review on Sustainability in Tunneling—Bibliometrics, Challenges, and Solutions," Sustainability, MDPI, vol. 14(4), pages 1-33, February.
    2. Irene Josa & Albert de la Fuente & Maria del Mar Casanovas-Rubio & Jaume Armengou & Antonio Aguado, 2021. "Sustainability-Oriented Model to Decide on Concrete Pipeline Reinforcement," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    3. S. M. Amin Hosseini & Rama Ghalambordezfooly & Albert de la Fuente, 2022. "Sustainability Model to Select Optimal Site Location for Temporary Housing Units: Combining GIS and the MIVES–Knapsack Model," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    4. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harkaitz García & Mikel Zubizarreta & Jesús Cuadrado & Juan Luis Osa, 2018. "Sustainability Improvement in the Design of Lightweight Roofs: A New Prototype of Hybrid Steel and Wood Purlins," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    2. Wim Lambrechts & Andrew Mitchell & Mark Lemon & Muhammad Usman Mazhar & Ward Ooms & Rikkert van Heerde, 2021. "The Transition of Dutch Social Housing Corporations to Sustainable Business Models for New Buildings and Retrofits," Energies, MDPI, vol. 14(3), pages 1-24, January.
    3. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    4. Oriol Pons & Saeid Habibi & Diana Peña, 2018. "Sustainability Assessment of Household Waste Based Solar Control Devices for Workshops in Primary Schools," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    5. Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Tatjana Vilutiene & Hojjat Adeli, 2017. "Sustainable Decision-Making in Civil Engineering, Construction and Building Technology," Sustainability, MDPI, vol. 10(1), pages 1-21, December.
    6. Antonio Nesticò & Piera Somma, 2019. "Comparative Analysis of Multi-Criteria Methods for the Enhancement of Historical Buildings," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    7. Irene Josa & Albert de la Fuente & Maria del Mar Casanovas-Rubio & Jaume Armengou & Antonio Aguado, 2021. "Sustainability-Oriented Model to Decide on Concrete Pipeline Reinforcement," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    8. Rogério Moreno Perlingeiro & Mayra Soares Pereira Lima Perlingeiro & Christine Kowal Chinelli & Elaine Garrido Vazquez & Eduardo Linhares Qualharini & Assed N. Haddad & Ahmed W. A. Hammad & Carlos Alb, 2020. "Sustainable Assessment of Public Works through a Multi-Criteria Framework," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    9. Rosa Puertas & Luisa Marti & Jose-Maria Garcia-Alvarez-Coque, 2020. "Food Supply without Risk: Multicriteria Analysis of Institutional Conditions of Exporters," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    10. Bahareh Maleki & Maria del Mar Casanovas-Rubio & Konstantinos Daniel Tsavdaridis & Albert de la Fuente Antequera, 2024. "Integrated Value Model for Sustainable Assessment of Modular Residential Towers: Case Study: Ten Degrees Croydon and Apex House in London," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    11. Alejandro Enfedaque & Marcos G. Alberti & Jaime C. Gálvez & Marino Rivera & José M. Simón-Talero, 2018. "Can Polyolefin Fibre Reinforced Concrete Improve the Sustainability of a Flyover Bridge?," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    12. Juan Diego Araya & Ana Hernando & Rosario Tejera & Javier Velázquez, 2023. "Sustainable Tourism around Ecosystem Services: Application to a Case in Costa Rica Using Multi-Criteria Methods," Land, MDPI, vol. 12(3), pages 1-21, March.
    13. Edmundas Kazimieras Zavadskas & Jonas Šaparauskas & Jurgita Antucheviciene, 2018. "Sustainability in Construction Engineering," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    14. Anna Devitofrancesco & Lorenzo Belussi & Italo Meroni & Fabio Scamoni, 2019. "Development of an Indoor Environmental Quality Assessment Tool for the Rating of Offices in Real Working Conditions," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    15. Silvia Santini & Vittoria Borghese & Carlo Baggio, 2023. "HBIM-Based Decision-Making Approach for Sustainable Diagnosis and Conservation of Historical Timber Structures," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    16. Irene Josa & Nikola Tošić & Snežana Marinković & Albert de la Fuente & Antonio Aguado, 2021. "Sustainability-Oriented Multi-Criteria Analysis of Different Continuous Flight Auger Piles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    17. Rogério Moreno Perlingeiro & Mayra Soares Pereira Lima Perlingeiro & Carlos Alberto Pereira Soares, 2021. "Criteria for the assessment of sustainability of public constructions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15450-15493, October.
    18. Ziortza Egiluz & Jesús Cuadrado & Andoni Kortazar & Ignacio Marcos, 2021. "Multi-Criteria Decision-Making Method for Sustainable Energy-Saving Retrofit Façade Solutions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    19. Oriol Pons-Valladares & S. M. Amin Hosseini & Jordi Franquesa, 2022. "Innovative Approach to Assist Architecture Teachers in Choosing Practical Sessions," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    20. Oriol Pons & Jordi Franquesa & S. M. Amin Hosseini, 2019. "Integrated Value Model to Assess the Sustainability of Active Learning Activities and Strategies in Architecture Lectures for Large Groups," Sustainability, MDPI, vol. 11(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4765-:d:190382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.