The Flexible Gumbel Distribution: A New Model for Inference about the Mode
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
- Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
- Jerome M. Krief, 2017. "Semi‐linear mode regression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 149-167.
- Turan G. Bali, 2003. "An Extreme Value Approach to Estimating Volatility and Value at Risk," The Journal of Business, University of Chicago Press, vol. 76(1), pages 83-108, January.
- Jerome M. Krief, 2017. "Semi‐linear mode regression," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 149-167, June.
- Kahadawala Cooray, 2010. "Generalized Gumbel distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 171-179.
- Riquan Zhang & Weihua Zhao & Jicai Liu, 2013. "Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 523-544, June.
- Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
- Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Qingyang & Huang, Xianzheng & Bai, Ray, 2024. "Bayesian modal regression based on mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Ullah, Aman & Wang, Tao & Yao, Weixin, 2023.
"Semiparametric partially linear varying coefficient modal regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
- Aman Ullah & Tao Wang & Weixin Yao, 2022. "Semiparametric Partially Linear Varying Coefficient Modal Regression," Working Papers 202215, University of California at Riverside, Department of Economics, revised Jun 2022.
- Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
- Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
- Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
- Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
- Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
- Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
- Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
- Yang, Hu & Guo, Chaohui & Lv, Jing, 2014. "A robust and efficient estimation method for single-index varying-coefficient models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 119-127.
- Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
- Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
- Aman Ullah & Tao Wang & Weixin Yao, 2021.
"Modal regression for fixed effects panel data,"
Empirical Economics, Springer, vol. 60(1), pages 261-308, January.
- Aman Ullah & Tao Wang & Weixin Yao, 2020. "Modal Regression for Fixed Effects Panel Data," Working Papers 202102, University of California at Riverside, Department of Economics, revised Nov 2020.
- Aman Ullah & Tao Wang & Weixin Yao, 2022.
"Nonlinear modal regression for dependent data with application for predicting COVID‐19,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
- Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear Modal Regression for Dependent Data with Application for Predicting COVID-19," Working Papers 202207, University of California at Riverside, Department of Economics.
- Kangning Wang & Xiaofei Sun, 2020. "Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data," Statistical Papers, Springer, vol. 61(3), pages 967-995, June.
- Eduardo Schirmer Finn & Eduardo Horta, 2024. "Convolution Mode Regression," Papers 2412.05736, arXiv.org.
- Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
- Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
- Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
More about this item
Keywords
extreme values; mixture distribution; modal regression; unimodal distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:19-332:d:1356153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.