A New Class of Alternative Bivariate Kumaraswamy-Type Models: Properties and Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Barry C. Arnold & Indranil Ghosh, 2017. "Some alternative bivariate Kumaraswamy models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(18), pages 9335-9354, September.
- Arnold, Barry C. & Tony Ng, Hon Keung, 2011. "Flexible bivariate beta distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1194-1202, September.
- Saralees Nadarajah, 2007. "A new bivariate beta distribution with application to drought data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 153-174.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olkin, Ingram & Trikalinos, Thomas A., 2015. "Constructions for a bivariate beta distribution," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 54-60.
- Ghosh Indranil, 2019. "On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 115-121, December.
- Indranil Ghosh & Filipe J. Marques, 2021. "Tail Conditional Expectations Based on Kumaraswamy Dispersion Models," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
- M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
- Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
- Arnold Barry C. & Arvanitis Matthew, 2021. "On a general class of gamma based copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 374-384, January.
- Catalina Bolancé & Montserrat Guillen & Albert Pitarque, 2020. "A Sarmanov Distribution with Beta Marginals: An Application to Motor Insurance Pricing," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
- Nozer D. Singpurwalla & Barry C. Arnold & Joseph L. Gastwirth & Anna S. Gordon & Hon Keung Tony Ng, 2016. "Adversarial and Amiable Inference in Medical Diagnosis, Reliability and Survival Analysis," International Statistical Review, International Statistical Institute, vol. 84(3), pages 390-412, December.
More about this item
Keywords
bivariate Kumaraswamy-type distribution; positive likelihood ratio dependence; maximum likelihood estimation; earthquake data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:1:p:14-252:d:1051184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.