IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i1p14-252d1051184.html
   My bibliography  Save this article

A New Class of Alternative Bivariate Kumaraswamy-Type Models: Properties and Applications

Author

Listed:
  • Indranil Ghosh

    (Department of Mathematics and Statistics, University of North Carolina, Wilmington, NC 28403, USA)

Abstract

In this article, we introduce two new bivariate Kumaraswamy (KW)-type distributions with univariate Kumaraswamy marginals (under certain parametric restrictions) that are less restrictive in nature compared with several other existing bivariate beta and beta-type distributions. Mathematical expressions for the joint and marginal density functions are presented, and properties such as the marginal and conditional distributions, product moments and conditional moments are obtained. Additionally, we show that both the proposed bivariate probability models have positive likelihood ratios dependent on a potential model for fitting positively dependent data in the bivariate domain. The method of maximum likelihood and the method of moments are used to derive the associated estimation procedure. An acceptance and rejection sampling plan to draw random samples from one of the proposed models along with a simulation study are also provided. For illustrative purposes, two real data sets are reanalyzed from different domains to exhibit the applicability of the proposed models in comparison with several other bivariate probability distributions, which are defined on [ 0 , 1 ] × [ 0 , 1 ] .

Suggested Citation

  • Indranil Ghosh, 2023. "A New Class of Alternative Bivariate Kumaraswamy-Type Models: Properties and Applications," Stats, MDPI, vol. 6(1), pages 1-21, January.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:1:p:14-252:d:1051184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barry C. Arnold & Indranil Ghosh, 2017. "Some alternative bivariate Kumaraswamy models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(18), pages 9335-9354, September.
    2. Arnold, Barry C. & Tony Ng, Hon Keung, 2011. "Flexible bivariate beta distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1194-1202, September.
    3. Saralees Nadarajah, 2007. "A new bivariate beta distribution with application to drought data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 153-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olkin, Ingram & Trikalinos, Thomas A., 2015. "Constructions for a bivariate beta distribution," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 54-60.
    2. Ghosh Indranil, 2019. "On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey," Stochastics and Quality Control, De Gruyter, vol. 34(2), pages 115-121, December.
    3. Indranil Ghosh & Filipe J. Marques, 2021. "Tail Conditional Expectations Based on Kumaraswamy Dispersion Models," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    4. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    5. Célestin C. Kokonendji & Aboubacar Y. Touré & Amadou Sawadogo, 2020. "Relative variation indexes for multivariate continuous distributions on $$[0,\infty )^k$$[0,∞)k and extensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 285-307, June.
    6. Arnold Barry C. & Arvanitis Matthew, 2021. "On a general class of gamma based copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 374-384, January.
    7. Catalina Bolancé & Montserrat Guillen & Albert Pitarque, 2020. "A Sarmanov Distribution with Beta Marginals: An Application to Motor Insurance Pricing," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    8. Nozer D. Singpurwalla & Barry C. Arnold & Joseph L. Gastwirth & Anna S. Gordon & Hon Keung Tony Ng, 2016. "Adversarial and Amiable Inference in Medical Diagnosis, Reliability and Survival Analysis," International Statistical Review, International Statistical Institute, vol. 84(3), pages 390-412, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:1:p:14-252:d:1051184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.