IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v2y2019i3p25-370d245372.html
   My bibliography  Save this article

Computing Happiness from Textual Data

Author

Listed:
  • Emad Mohamed

    (Research Group in Computational Linguistics, University of Wolverhampton, Wolverhampton WV1 1LY, UK
    These authors contributed equally to this work.)

  • Sayed A. Mostafa

    (Department of Mathematics & Statistics, North Carolina A&T State University, Greensboro, NC 27411, USA
    These authors contributed equally to this work.)

Abstract

In this paper, we use a corpus of about 100,000 happy moments written by people of different genders, marital statuses, parenthood statuses, and ages to explore the following questions: Are there differences between men and women, married and unmarried individuals, parents and non-parents, and people of different age groups in terms of their causes of happiness and how they express happiness? Can gender, marital status, parenthood status and/or age be predicted from textual data expressing happiness? The first question is tackled in two steps: first, we transform the happy moments into a set of topics, lemmas, part of speech sequences, and dependency relations; then, we use each set as predictors in multi-variable binary and multinomial logistic regressions to rank these predictors in terms of their influence on each outcome variable (gender, marital status, parenthood status and age). For the prediction task, we use character, lexical, grammatical, semantic, and syntactic features in a machine learning document classification approach. The classification algorithms used include logistic regression, gradient boosting, and fastText. Our results show that textual data expressing moments of happiness can be quite beneficial in understanding the “causes of happiness” for different social groups, and that social characteristics like gender, marital status, parenthood status, and, to some extent age, can be successfully predicted form such textual data. This research aims to bring together elements from philosophy and psychology to be examined by computational corpus linguistics methods in a way that promotes the use of Natural Language Processing for the Humanities.

Suggested Citation

  • Emad Mohamed & Sayed A. Mostafa, 2019. "Computing Happiness from Textual Data," Stats, MDPI, vol. 2(3), pages 1-24, July.
  • Handle: RePEc:gam:jstats:v:2:y:2019:i:3:p:25-370:d:245372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/2/3/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/2/3/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    2. Ruut Veenhoven, 2015. "Informed Pursuit of Happiness: What we should know, do know and can get to know," Journal of Happiness Studies, Springer, vol. 16(4), pages 1035-1071, August.
    3. Sofie Vanassche & Gray Swicegood & Koen Matthijs, 2013. "Marriage and Children as a Key to Happiness? Cross-National Differences in the Effects of Marital Status and Children on Well-Being," Journal of Happiness Studies, Springer, vol. 14(2), pages 501-524, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    3. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    4. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    5. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    6. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    7. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    8. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    9. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    10. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    11. Efstratia Arampatzi & Martijn J. Burger & Natallia Novik, 2018. "Social Network Sites, Individual Social Capital and Happiness," Journal of Happiness Studies, Springer, vol. 19(1), pages 99-122, January.
    12. Papageorgiou, Athanasios, 2018. "The Effect of Immigration on the Well-Being of Native Populations: Evidence from the United Kingdom," MPRA Paper 93045, University Library of Munich, Germany.
    13. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    14. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    15. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    16. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    17. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    18. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    19. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    20. Borke, Lukas & Härdle, Wolfgang Karl, 2016. "Q3-D3-Lsa," SFB 649 Discussion Papers 2016-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:2:y:2019:i:3:p:25-370:d:245372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.