IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i9p167-d634045.html
   My bibliography  Save this article

Option Pricing, Zero Lower Bound, and COVID-19

Author

Listed:
  • Giacomo Morelli

    (Department of Statistical Sciences, Sapienza University of Rome, 00185 Rome, Italy)

  • Lea Petrella

    (MEMOTEF Department, Sapienza University of Rome, 00161 Rome, Italy)

Abstract

This paper provides a quantitative assessment of equity options priced at the Zero Lower Bound, i.e., when interest rates are set essentially to zero. We obtain closed form formulas for American options when the Zero Lower Bound policy holds. We perform numerical implementation of American put options written on the stock Federal National Mortgage Association (FNMA) and of related bounds for the optimal exercise. The results show similarities with the corresponding European options priced at the Zero Lower Bound during the COVID-19 crisis.

Suggested Citation

  • Giacomo Morelli & Lea Petrella, 2021. "Option Pricing, Zero Lower Bound, and COVID-19," Risks, MDPI, vol. 9(9), pages 1-13, September.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:9:p:167-:d:634045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/9/167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/9/167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Allegretto & Giovanni Barone-Adesi & Robert Elliott, 1995. "Numerical evaluation of the critical price and American options," The European Journal of Finance, Taylor & Francis Journals, vol. 1(1), pages 69-78.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Krippner, Leo, 2013. "Measuring the stance of monetary policy in zero lower bound environments," Economics Letters, Elsevier, vol. 118(1), pages 135-138.
    6. Lingjiong Zhu, 2015. "Options with Extreme Strikes," Risks, MDPI, vol. 3(3), pages 1-16, July.
    7. Stefano Ramelli & Alexander F Wagner, 0. "Feverish Stock Price Reactions to COVID-19," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 622-655.
    8. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    9. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    10. Chung-Li Tseng & Daniel Wei-Chung Miao & San-Lin Chung & Pai-Ta Shih, 2021. "How Much Do Negative Probabilities Matter in Option Pricing?: A Case of a Lattice-Based Approach for Stochastic Volatility Models," JRFM, MDPI, vol. 14(6), pages 1-32, May.
    11. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    12. John, Kose & Li, Jingrui, 2021. "COVID-19, volatility dynamics, and sentiment trading," Journal of Banking & Finance, Elsevier, vol. 133(C).
    13. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jitsawatpaiboon, Kanokrak & Ruan, Xinfeng, 2023. "The COVID-19 risk in the cross-section of equity options," Finance Research Letters, Elsevier, vol. 53(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    2. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    3. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    4. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    5. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    6. Deswal, Komal & Kumar, Devendra, 2022. "Rannacher time-marching with orthogonal spline collocation method for retrieving the discontinuous behavior of hedging parameters," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    7. Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
    8. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    9. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    12. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    13. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    14. Cassimon, D. & Engelen, P.J. & Thomassen, L. & Van Wouwe, M., 2007. "Closed-form valuation of American call options on stocks paying multiple dividends," Finance Research Letters, Elsevier, vol. 4(1), pages 33-48, March.
    15. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    16. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    17. Detemple, Jerome & Kitapbayev, Yerkin, 2022. "Optimal technology adoption for power generation," Energy Economics, Elsevier, vol. 111(C).
    18. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    19. Mojtaba Hajipour & Alaeddin Malek, 2015. "Efficient High-Order Numerical Methods for Pricing of Options," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 31-47, January.
    20. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:9:p:167-:d:634045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.