IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i2p62-d367569.html
   My bibliography  Save this article

Hedging with Liquidity Risk under CEV Diffusion

Author

Listed:
  • Sang-Hyeon Park

    (Asset Management Department, Daishin Securities, Seoul 06131, Korea
    These authors contributed equally to this work.)

  • Kiseop Lee

    (Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
    These authors contributed equally to this work.)

Abstract

We study a discrete time hedging and pricing problem in a market with the liquidity risk. We consider a discrete version of the constant elasticity of variance (CEV) model by applying Leland’s discrete time replication scheme. The pricing equation becomes a nonlinear partial differential equation, and we solve it by a multi scale perturbation method. A numerical example is provided.

Suggested Citation

  • Sang-Hyeon Park & Kiseop Lee, 2020. "Hedging with Liquidity Risk under CEV Diffusion," Risks, MDPI, vol. 8(2), pages 1-12, June.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:2:p:62-:d:367569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/2/62/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/2/62/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ku, Hyejin & Lee, Kiseop & Zhu, Huaiping, 2012. "Discrete time hedging with liquidity risk," Finance Research Letters, Elsevier, vol. 9(3), pages 135-143.
    2. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    3. Robert A. Jarrow, 2008. "Market Manipulation, Bubbles, Corners, and Short Squeezes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 6, pages 105-130, World Scientific Publishing Co. Pte. Ltd..
    4. U. Çetin & R. Jarrow & P. Protter & M. Warachka, 2008. "Pricing Options in an Extended Black Scholes Economy with Illiquidity: Theory and Empirical Evidence," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 9, pages 185-221, World Scientific Publishing Co. Pte. Ltd..
    5. Back, Kerry, 1993. "Asymmetric Information and Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 435-472.
    6. Umut Çetin & Robert A. Jarrow & Philip Protter, 2008. "Liquidity risk and arbitrage pricing theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 8, pages 153-183, World Scientific Publishing Co. Pte. Ltd..
    7. Robert A. Jarrow, 2008. "Derivative Security Markets, Market Manipulation, and Option Pricing Theory," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 7, pages 131-151, World Scientific Publishing Co. Pte. Ltd..
    8. Peter Bank & Dietmar Baum, 2004. "Hedging and Portfolio Optimization in Financial Markets with a Large Trader," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 1-18, January.
    9. Rüdiger Frey, 2000. "Risk Minimization with Incomplete Information in a Model for High‐Frequency Data," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 215-225, April.
    10. Robert Jarrow, 2001. "Default Parameter Estimation Using Market Prices," Financial Analysts Journal, Taylor & Francis Journals, vol. 57(5), pages 75-92, September.
    11. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    12. Umut Çetin & H. Soner & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," Finance and Stochastics, Springer, vol. 14(3), pages 317-341, September.
    13. Ajay Subramanian & Robert A. Jarrow, 2001. "The Liquidity Discount," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 447-474, October.
    14. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374, October.
    15. RØdiger Frey, 1998. "Perfect option hedging for a large trader," Finance and Stochastics, Springer, vol. 2(2), pages 115-141.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ku, Hyejin & Lee, Kiseop & Zhu, Huaiping, 2012. "Discrete time hedging with liquidity risk," Finance Research Letters, Elsevier, vol. 9(3), pages 135-143.
    2. Gill, Ryan & Lee, Kiseop & Song, Seongjoo, 2007. "Computation of estimates in segmented regression and a liquidity effect model," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6459-6475, August.
    3. Sergey Lototsky & Henry Schellhorn & Ran Zhao, 2016. "A String Model of Liquidity in Financial Markets," Papers 1608.05900, arXiv.org, revised Apr 2018.
    4. David German & Henry Schellhorn, 2012. "A No-Arbitrage Model of Liquidity in Financial Markets involving Brownian Sheets," Papers 1206.4804, arXiv.org.
    5. Koichi Matsumoto, 2007. "Portfolio Insurance with Liquidity Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(4), pages 363-386, December.
    6. Koichi Matsumoto, 2009. "Mean-Variance Hedging with Uncertain Trade Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 219-252.
    7. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    8. Umut Çetin & L. C. G. Rogers, 2007. "Modeling Liquidity Effects In Discrete Time," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 15-29, January.
    9. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "Analytical valuation for geometric Asian options in illiquid markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 175-191.
    10. Olivier Guéant & Jiang Pu, 2017. "Option Pricing And Hedging With Execution Costs And Market Impact," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 803-831, July.
    11. Kraft, Holger & Kühn, Christoph, 2011. "Large traders and illiquid options: Hedging vs. manipulation," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1898-1915.
    12. Maria do Rosário Grossinho & Yaser Kord Faghan & Daniel Ševčovič, 2017. "Pricing Perpetual Put Options by the Black–Scholes Equation with a Nonlinear Volatility Function," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 24(4), pages 291-308, December.
    13. Alexandre Roch, 2011. "Liquidity risk, price impacts and the replication problem," Finance and Stochastics, Springer, vol. 15(3), pages 399-419, September.
    14. Jarrow, Robert & Protter, Philip, 2005. "Large traders, hidden arbitrage, and complete markets," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2803-2820, November.
    15. Erindi Allaj, 2017. "Implicit Transaction Costs And The Fundamental Theorems Of Asset Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-39, June.
    16. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    17. Salvatore Federico & Paul Gassiat, 2014. "Viscosity Characterization of the Value Function of an Investment-Consumption Problem in Presence of an Illiquid Asset," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 966-991, March.
    18. Umut Çetin & H. Soner & Nizar Touzi, 2010. "Option hedging for small investors under liquidity costs," Finance and Stochastics, Springer, vol. 14(3), pages 317-341, September.
    19. Elettra Agliardi & Rainer Andergassen, 2011. "(S,s)-adjustment Strategies and Hedging under Markovian Dynamics," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 36(2), pages 112-131, December.
    20. Soner, H. Mete & Cetin, Umut & Touzi, Nizar, 2010. "Option hedging for small investors under liquidity costs," LSE Research Online Documents on Economics 28992, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:2:p:62-:d:367569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.