Characterization and Prediction of the Ghana Stock Exchange Composite Index Utilizing Bayesian Stochastic Volatility Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002.
"Bayesian Analysis of Stochastic Volatility Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
- Kastner, Gregor, 2016.
"Dealing with Stochastic Volatility in Time Series Using the R Package stochvol,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
- Gregor Kastner, 2019. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Papers 1906.12134, arXiv.org.
- Bekaert, Geert & Harvey, Campbell R, 1995.
"Time-Varying World Market Integration,"
Journal of Finance, American Finance Association, vol. 50(2), pages 403-444, June.
- Geert Bekaert & Campbell R. Harvey, 1994. "Time-Varying World Market Integration," NBER Working Papers 4843, National Bureau of Economic Research, Inc.
- repec:eme:mfppss:v:37:y:2011:i:10:p:940-952 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Darjus Hosszejni & Gregor Kastner, 2019. "Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol," Papers 1906.12123, arXiv.org, revised Feb 2021.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Liu, Wei-han, 2016. "A re-examination of maturity effect of energy futures price from the perspective of stochastic volatility," Energy Economics, Elsevier, vol. 56(C), pages 351-362.
- Roberto León-González, 2019.
"Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
- Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," Working Paper series 19_14, Rimini Centre for Economic Analysis.
- Roberto Leon-Gonzalez, 2015. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 15-17, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 14-12, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez, 2018. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 17-16, National Graduate Institute for Policy Studies.
- Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org, revised Jan 2025.
- Wang, Nianling & Lou, Zhusheng, 2023. "Sequential Bayesian analysis for semiparametric stochastic volatility model with applications," Economic Modelling, Elsevier, vol. 123(C).
- Huang, Shirley J. & Yu, Jun, 2010.
"Bayesian analysis of structural credit risk models with microstructure noises,"
Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
- Shirley J. Huang & Jun Yu, "undated". "Bayesian Analysis of Structural Credit Risk Models with Microstructure Noises," Working Papers CoFie-07-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Shirley J. Huang & Jun Yu, 2009. "Bayesian Analysis of Structural Credit Risk Models with Microstructure Noises," Finance Working Papers 23054, East Asian Bureau of Economic Research.
- Niaz Bashiri Behmiri & Maryam Ahmadi & Juha-Pekka Junttila & Matteo Manera, 2021.
"Financial Stress and Basis in Energy Markets,"
The Energy Journal, , vol. 42(5), pages 67-88, September.
- Niaz Bashiri Behmiri, Maryam Ahmadi, Juha-Pekka Junttila, and Matteo Manera, 2021. "Financial Stress and Basis in Energy Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
- Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
- Hwai-Chung Ho, 2022. "Forecasting the distribution of long-horizon returns with time-varying volatility," Papers 2201.07457, arXiv.org.
- Jensen, Mark J. & Maheu, John M., 2014.
"Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture,"
Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
- Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2012. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," FRB Atlanta Working Paper 2012-06, Federal Reserve Bank of Atlanta.
- Mark J. Jensen & John M. Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Paper series 45_12, Rimini Centre for Economic Analysis.
- Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
- David E. Allen & Michael McAleer, 2020. "Do We Need Stochastic Volatility and Generalised Autoregressive Conditional Heteroscedasticity? Comparing Squared End-Of-Day Returns on FTSE," Risks, MDPI, vol. 8(1), pages 1-20, February.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Lopes, Hedibert F., 2014. "Particle learning for Bayesian non-parametric Markov Switching Stochastic Volatility model," DES - Working Papers. Statistics and Econometrics. WS ws142819, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
- Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
More about this item
Keywords
Stochastic Volatility models; financial time series; Ghana Stock Exchange Composite Index; Hurst exponent; R / S analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2024:i:1:p:3-:d:1556848. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.