IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i9p139-d1467837.html
   My bibliography  Save this article

A Novel Hybrid Deep Learning Method for Accurate Exchange Rate Prediction

Author

Listed:
  • Farhat Iqbal

    (Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia
    Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia)

  • Dimitrios Koutmos

    (Department of Accounting, Finance, and Business Law, College of Business, Texas A&M University—Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, USA
    Texas A&M University System—RELLIS Science & Tech. Center, 3478 TAMU, College Station, TX 77843, USA)

  • Eman A. Ahmed

    (Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia
    Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia)

  • Lulwah M. Al-Essa

    (Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia
    Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia)

Abstract

The global foreign exchange (FX) market represents a critical and sizeable component of our financial system. It is a market where firms and investors engage in both speculative trading and hedging. Over the years, there has been a growing interest in FX modeling and prediction. Recently, machine learning (ML) and deep learning (DL) techniques have shown promising results in enhancing predictive accuracy. Motivated by the growing size of the FX market, as well as advancements in ML, we propose a novel forecasting framework, the MVO-BiGRU model, which integrates variational mode decomposition (VMD), data augmentation, Optuna-optimized hyperparameters, and bidirectional GRU algorithms for monthly FX rate forecasting. The data augmentation in the Prevention module significantly increases the variety of data combinations, effectively reducing overfitting issues, while the Optuna optimization ensures optimal model configuration for enhanced performance. Our study’s contributions include the development of the MVO-BiGRU model, as well as the insights gained from its application in FX markets. Our findings demonstrate that the MVO-BiGRU model can successfully avoid overfitting and achieve the highest accuracy in out-of-sample forecasting, while outperforming benchmark models across multiple assessment criteria. These findings offer valuable insights for implementing ML and DL models on low-frequency time series data, where artificial data augmentation can be challenging.

Suggested Citation

  • Farhat Iqbal & Dimitrios Koutmos & Eman A. Ahmed & Lulwah M. Al-Essa, 2024. "A Novel Hybrid Deep Learning Method for Accurate Exchange Rate Prediction," Risks, MDPI, vol. 12(9), pages 1-20, August.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:9:p:139-:d:1467837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/9/139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/9/139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    3. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    4. Wu, Shue-Jen, 2023. "The role of the past long-run oil price changes in stock market," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 274-291.
    5. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    6. Yaojie Zhang & Feng Ma & Chao Liang & Yi Zhang, 2021. "Good variance, bad variance, and stock return predictability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4410-4423, July.
    7. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    8. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    9. Liu, Li & Tan, Siming & Wang, Yudong, 2020. "Can commodity prices forecast exchange rates?," Energy Economics, Elsevier, vol. 87(C).
    10. Wang, Yilei & Cheng, Sheng & Cao, Yan, 2022. "How does economic policy uncertainty respond to the global oil price fluctuations? Evidence from BRICS countries," Resources Policy, Elsevier, vol. 79(C).
    11. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    12. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    13. Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    15. Li, Yan & Huo, Jiale & Xu, Yongan & Liang, Chao, 2023. "Belief-based momentum indicator and stock market return predictability," Research in International Business and Finance, Elsevier, vol. 64(C).
    16. Xiao, Jihong & Wang, Yudong, 2022. "Good oil volatility, bad oil volatility, and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 953-966.
    17. Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
    18. Li, Yan & Liang, Chao & Huynh, Toan Luu Duc, 2022. "Forecasting US stock market returns by the aggressive stock-selection opportunity," Finance Research Letters, Elsevier, vol. 50(C).
    19. Bai, Fan & Zhang, Yaqi & Chen, Zhonglu & Li, Yan, 2023. "The volatility of daily tug-of-war intensity and stock market returns," Finance Research Letters, Elsevier, vol. 55(PA).
    20. Nonejad, Nima, 2021. "Predicting equity premium by conditioning on macroeconomic variables: A prediction selection strategy using the price of crude oil," Finance Research Letters, Elsevier, vol. 41(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:9:p:139-:d:1467837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.